Physical Infrastructure Connections of WLAN Components
Last Updated :
23 Jul, 2025
The IETF Control and Provisioning of Wireless Access Points Protocol (CAPWAP) standard are used by Lightweight Cisco Access Points for the purpose of communicating with wireless controllers and other lightweight access points on your network.
CAPWAP:
The functional design of the Cisco Unified Wireless Network solution, the Cisco Centralized WLAN Architecture, uses CAPWAP as its foundational protocol. It controls APs and WLANs, wraps and transmits WLAN client communications between APs and WLAN controllers, and manages and configures APs and WLANs (WLCs). The cornerstone of CAPWAP is the Lightweight Access Point Protocol (LWAPP), but Datagram Transport Layer Protection improves security (DTLS). CAPWAP, which makes use of the User Datagram Protocol (UDP), is compatible with both Internet Protocol Version 4 (IPv4) and Internet Protocol Version 6 (IPv6). The data transferred between the LAP and WLC is compressed using new IP packets by CAPWAP. Traffic that has been tunneled is subsequently switched or routed using the campus network.
Control messages sent over CAPWAP are used to set up and monitor AP operations. Control messages are sent over the control tunnel after authentication and encryption to ensure that APs are securely managed only by the correct WLC. The only tunnel protected by default is the CAPWAP (Wireless Access Point Control and Provisioning) control tunnel. Client data is sent over to the CAPWAP data tunnel, but encryption is optional. DHCP queries contain client data and are not encrypted by default. Last but not least, 802.11 beacons are sent wirelessly from the LAP, so they are not encrypted or sent over CAPWAP.
A CAPWAP tunnel is required because the network is built with WLCs and LAPs. Each LAP is connected to the WLC via one he CAPWAP tunnel for a total of 32 tunnels. CAPWAP encapsulates wireless communications in an additional IP header so that tunneled packets can be routed through a Layer 3 network. So the LAPs and WLCs are on any IP subnet as long as they have access to the subnet. LAPs and WLCs are not restricted from sharing Layer 2 VLANs or Layer 3 IP subnets. A lightweight AP only requires one access link with a single VLAN when operating in local mode. All other data is sent to the WLC over the CAPWAP tunnel.
Wireless Controller Port:
The physical connection to the switched network infrastructure exists through the wireless controller port. The device's physical ports include controller ports. The main physical controller ports are as follows:
- Service Port (SP): Used for out-of-band management, initial boot, and system recovery. A computer must be connected to the service port when configuring the controller via the GUI.
- Redundant Port (RP): Additional controllers can be connected to this port to enable redundant operation.
- Distribution Ports: Management and all access point traffic pass through these ports. The distribution port is connected when the switch port is in trunk mode. The 4400 and 5500 series controllers contain 4 and 8 distribution ports respectively.
- The console port is used for out-of-band management, system recovery, and early boot operations.
LAG:
Ports are aggregated by the controller through a Link Aggregation Group (LAG). The 802.3ad port aggregation standard is only partially implemented. All ports of the controller's distribution system are combined into a single 802.3ad port channel, reducing the number of IP addresses required to configure the controller's ports. LAG provides link redundancy between the two devices, doubling bandwidth and expanding port flexibility. A logical channel can be created by combining a number of physical ports under the control of the Link Aggregation Control Protocol (LACP), part of the IEEE specification (802.3az) (LAG). WLC Interface: Cisco Wireless Controller's internal logic interface provides the necessary connectivity. These interfaces must be configured with an IP address, subnet mask, default gateway, and dynamic host.
WLC Interface:
The Cisco Wireless Controller provides the necessary connectivity through an internal logical interface. These interfaces must be configured with an IP address, subnet mask, default gateway, and Dynamic Host Configuration Protocol (DHCP) server. Each interface is then assigned a physical port and VLAN ID.
WLC PORTS (Physical Interfaces):
Some ports may or may not be present, depending on the WLC model. All WLCs have a console port and a distribution system port.
1. Redundancy Port: This port is used for deployment architectures that support High Availability (HA) when two WLCs are available. In this configuration, the Redundant Port acts as a physical connection between the two WLCs via an Ethernet cable. Role negotiation between primary and secondary controllers is done through redundant ports that are also used to synchronize configuration and operational data. Redundancy Port checks peer availability by sending a UDP keepalive message from the standby hot WLC to the active WLC every 100ms days. Finally, the redundant port IP address is always 169.254.xxx.xxx, which is the first two bytes.
2. Service Port: In the event of a network failure, the service port is used for system recovery and maintenance and for out-of-band management of the controller. Note that service ports do not support VLAN trunking or VLAN tagging and should be connected to access ports on the switch. Additionally, this may prevent the administrator from accessing the controller's management interface (more on this later), so it is not recommended to connect the service port to his VLAN, which is the same as the wired client's network.
3. SFP/Ethernet Distribution System Ports: The WLC's most important port is the distribution system port. This is to connect internal logical interfaces (explained later) and wireless client traffic to the rest of the network. High-end WLCs, such as his WLC 5500 series mentioned earlier, are equipped with multiple of his SFP-based distribution system ports that allow an engineer to connect his WLC to his network, his backbone in a variety of ways. By using the right SFP, you can connect your fiber optic or ethernet copper interface to its SFP port. Low-end WLCs such as the WLC2504 and the older WLC2100 series only offer Ethernet ports as only a few access points are supported. For example, the WLC2125 has up to 8 FastEthernet ports and supports up to 25 access points, while the WLC2504 offers up to 4 Gigabit Ethernet ports and can support up to 75 access points.
WLC PORTS (Logical Interfaces):
Understanding the function of each logical interface is essential to successfully installing and operating a Cisco WLC-based wireless network. The WLC's logical interfaces are used for various tasks such as managing controllers, access points, user data, and managing wireless SSIDs broadcast by access points.
1. Management Interface: The management interface is the default interface for controlling and using the WLC. Through the WLC's administrative interface, the access point also communicates with it. The IP address of the administration interface, which is the only pingable IP address, is used by the administrator to manage her WLC.
The administrator can access her WLC's configuration GUI by entering the management interface IP address in a web browser to log into the system.
2. AP-Manager Interface: Once the lightweight access points have joined the controller, all Layer 3 communications take place through one or more AP-manager interfaces that the controller may have. His IP address in the AP management is used as the tunnel source when sending CAPWAP/LWAPP packets from the controller to the access point and as the destination IP address when sending packets from the access point to the controller. Although models like the WLC2504 and WLC5508 lack a standalone AP-manager interface, setting one up and utilizing it is optional. Certain models have a setting in the management interface settings called "enable dynamic AP management," which enables simultaneous usage of the management interface as an AP manager interface. Although each AP-manager interface is capable of supporting up to 48 access points, according to the documentation published by Cisco, the most recent firmware upgrade allows the smaller WLC model (2504) to support up to 75 access points. We are here to help. This limit has reportedly been raised to 75 because it is now accepted. A dual management/AP manager interface is present. A number of AP-manager interfaces should be set up if you install more access points.
3. Virtual Interface: Virtual interfaces provide DHCP relay functionality, guest web authentication, VPN termination, and other services used to manage and support wireless clients. The virtual interface performs two main functions:
- Acts as a temporary DHCP server for wireless clients that obtain IP addresses from a DHCP server.
- Used at this point to direct the user to her web authentication login page (if configured).
Controllers and wireless clients are the only parties that can communicate using the IP address of the virtual interface. It does not appear on packets exiting the distribution port and traveling to the local network as a source or destination address. Finally, virtual interface IP addresses must be unique across the network. Therefore, 1.1.1.1 is a commonly used IP address for virtual interfaces. For roaming between controllers to work properly without losing connectivity, each controller in the mobility group must be configured with the same virtual interface IP address.
4. Service Port Interface: The controller is managed out-of-band through the service port interface. If your management workstation is on a remote subnet, you may need to add IPv4 routes to manage the controller from the remote workstation. Note that the manager/AP-manager interface and service port IP addresses cannot be on the same subnet. WLC2124 and WLC2504 are small WLC devices without a service port interface.
5. Dynamic Interface: The easiest way to describe how they work is to think of dynamic interfaces as VLAN interfaces on your wireless network (SSID). One dynamic interface is configured per WLAN/SSID. A dynamic interface is assigned to a specific VLAN network after a wireless network or SSID has been assigned. As already mentioned, dynamic interfaces can be assigned to different physical distribution ports, allowing traffic from specific WLANs to be routed to the wired network through specific distribution ports. In this case, each distribution port carries only one VLAN on one access link. Another option is to map all dynamic interfaces to one distribution port and let it act as a trunk port, broadcasting all WLANs and VLANs. This is a common configuration technique for small networks. The final requirement is that each dynamic interface must be on a unique IP subnet or VLAN from all other interfaces. The WLC2504 controller can manage up to 16 SSIDs, thus supporting up to 16 VLANs and up to 16 dynamic interfaces.
Distribution Port - Link Aggregation:
The 802.3ad port standard allows you to combine many distribution ports of all WLCs into one port. An administrator can do this to create a single comprehensive connection between the local switch and the WLC. For example, the WLC2504 has 4 Gigabit Ethernet ports and can be combined with adjacent switches to create a 4 Gigabit Ethernet connection with your wired network. To enable link aggregation, an EtherChannel must be set up on the local switch. WLC does not support Link Aggregation Control Protocol (LACP) or Cisco's own Port Aggregation Protocol (PAgP), so it is important to set the switch to his LAG. Only one LAG group is supported per controller.
Conclusion:
The Cisco Wireless LAN Controller Interface was introduced in this article. We explored the functionality of all interfaces and ports on the WLC, including Ethernet distribution ports, service ports, redundancy ports, management interfaces, AP-manager interfaces, virtual interfaces, and dynamic interfaces.
Similar Reads
Computer Network Tutorial A Computer Network is a system where two or more devices are linked together to share data, resources and information. These networks can range from simple setups, like connecting two devices in your home, to massive global systems, like the Internet. Below are some uses of computer networksSharing
6 min read
Computer Network Basics
Basics of Computer NetworkingA computer network is a collection of interconnected devices that share resources and information. These devices can include computers, servers, printers, and other hardware. Networks allow for the efficient exchange of data, enabling various applications such as email, file sharing, and internet br
10 min read
Types of Computer NetworksA computer network is a system that connects many independent computers to share information (data) and resources. The integration of computers and other different devices allows users to communicate more easily. It is a collection of two or more computer systems that are linked together. A network
7 min read
Introduction to InternetComputers and their structures are tough to approach, and it is made even extra tough when you want to recognize phrases associated with the difficulty this is already utilized in regular English, Network, and the net will appear to be absolutely wonderful from one some other, however, they may seem
10 min read
Types of Network TopologyNetwork topology refers to the arrangement of different elements like nodes, links, or devices in a computer network. Common types of network topology include bus, star, ring, mesh, and tree topologies, each with its advantages and disadvantages. In this article, we will discuss different types of n
11 min read
Network DevicesNetwork devices are physical devices that allow hardware on a computer network to communicate and interact with each other. Network devices like hubs, repeaters, bridges, switches, routers, gateways, and brouter help manage and direct data flow in a network. They ensure efficient communication betwe
9 min read
What is OSI Model? - Layers of OSI ModelThe OSI (Open Systems Interconnection) Model is a set of rules that explains how different computer systems communicate over a network. OSI Model was developed by the International Organization for Standardization (ISO). The OSI Model consists of 7 layers and each layer has specific functions and re
13 min read
TCP/IP ModelThe TCP/IP model is a framework that is used to model the communication in a network. It is mainly a collection of network protocols and organization of these protocols in different layers for modeling the network.It has four layers, Application, Transport, Network/Internet and Network Access.While
7 min read
Difference Between OSI Model and TCP/IP ModelData communication is a process or act in which we can send or receive data. Understanding the fundamental structures of networking is crucial for anyone working with computer systems and communication. For data communication two models are available, the OSI (Open Systems Interconnection) Model, an
4 min read
Physical Layer
Physical Layer in OSI ModelThe physical Layer is the bottom-most layer in the Open System Interconnection (OSI) Model which is a physical and electrical representation of the system. It consists of various network components such as power plugs, connectors, receivers, cable types, etc. The physical layer sends data bits from
4 min read
Types of Network TopologyNetwork topology refers to the arrangement of different elements like nodes, links, or devices in a computer network. Common types of network topology include bus, star, ring, mesh, and tree topologies, each with its advantages and disadvantages. In this article, we will discuss different types of n
11 min read
Transmission Modes in Computer Networks (Simplex, Half-Duplex and Full-Duplex)Transmission modes also known as communication modes, are methods of transferring data between devices on buses and networks designed to facilitate communication. They are classified into three types: Simplex Mode, Half-Duplex Mode, and Full-Duplex Mode. In this article, we will discuss Transmission
6 min read
Types of Transmission MediaTransmission media is the physical medium through which data is transmitted from one device to another within a network. These media can be wired or wireless. The choice of medium depends on factors like distance, speed, and interference. In this article, we will discuss the transmission media. In t
9 min read
Data Link Layer
Data Link Layer in OSI ModelThe data link layer is the second layer from the bottom in the OSI (Open System Interconnection) network architecture model. Responsible for the node-to-node delivery of data within the same local network. Major role is to ensure error-free transmission of information. Also responsible for encoding,
4 min read
What is Switching?Switching is the process of transferring data packets from one device to another in a network, or from one network to another, using specific devices called switches. A computer user experiences switching all the time for example, accessing the Internet from your computer device, whenever a user req
5 min read
Virtual LAN (VLAN)Virtual LAN (VLAN) is a concept in which we can divide the devices logically on layer 2 (data link layer). Generally, layer 3 devices divide the broadcast domain but the broadcast domain can be divided by switches using the concept of VLAN. A broadcast domain is a network segment in which if a devic
7 min read
Framing in Data Link LayerFrames are the units of digital transmission, particularly in computer networks and telecommunications. Frames are comparable to the packets of energy called photons in the case of light energy. Frame is continuously used in Time Division Multiplexing process. Framing is a point-to-point connection
6 min read
Error Control in Data Link LayerData-link layer uses the techniques of error control simply to ensure and confirm that all the data frames or packets, i.e. bit streams of data, are transmitted or transferred from sender to receiver with certain accuracy. Using or providing error control at this data link layer is an optimization,
4 min read
Flow Control in Data Link LayerFlow control is design issue at Data Link Layer. It is a technique that generally observes the proper flow of data from sender to receiver. It is very essential because it is possible for sender to transmit data or information at very fast rate and hence receiver can receive this information and pro
4 min read
Piggybacking in Computer NetworksPiggybacking is the technique of delaying outgoing acknowledgment temporarily and attaching it to the next data packet. When a data frame arrives, the receiver waits and does not send the control frame (acknowledgment) back immediately. The receiver waits until its network layer moves to the next da
5 min read
Network Layer
Network Layer in OSI ModelThe Network Layer is the 5th Layer from the top and the 3rd layer from the Bottom of the OSI Model. It is one of the most important layers which plays a key role in data transmission. The main job of this layer is to maintain the quality of the data and pass and transmit it from its source to its de
5 min read
Introduction of Classful IP AddressingAn IP address is an address that has information about how to reach a specific host, especially outside the LAN. An IP address is a 32-bit unique address having an address space of 232.Classful IP addressing is a way of organizing and managing IP addresses, which are used to identify devices on a ne
11 min read
Classless Addressing in IP AddressingThe Network address identifies a network on the internet. Using this, we can find a range of addresses in the network and total possible number of hosts in the network. Mask is a 32-bit binary number that gives the network address in the address block when AND operation is bitwise applied on the mas
7 min read
What is an IP Address?Imagine every device on the internet as a house. For you to send a letter to a friend living in one of these houses, you need their home address. In the digital world, this home address is what we call an IP (Internet Protocol) Address. It's a unique string of numbers separated by periods (IPv4) or
14 min read
IPv4 Datagram HeaderIP stands for Internet Protocol and v4 stands for Version Four (IPv4). IPv4 was the primary version brought into action for production within the ARPANET in 1983. IP version four addresses are 32-bit integers which will be expressed in decimal notation. In this article, we will discuss about IPv4 da
4 min read
Difference Between IPv4 and IPv6IPv4 and IPv6 are two versions of the system that gives devices a unique address on the internet, known as the Internet Protocol (IP). IP is like a set of rules that helps devices send and receive data online. Since the internet is made up of billions of connected devices, each one needs its own spe
7 min read
Difference between Private and Public IP addressesIP Address or Internet Protocol Address is a type of address that is required to communicate one computer with another computer for exchanging information, file, webpage, etc. Public and Private IP address are two important parts of device identity. In this article, we will see the differences betwe
6 min read
Introduction To SubnettingSubnetting is the process of dividing a large network into smaller networks called "subnets." Subnets provide each group of devices with their own space to communicate, which ultimately helps the network to work easily. This also boosts security and makes it easier to manage the network, as each sub
8 min read
What is Routing?The process of choosing a path across one or more networks is known as Network Routing. Nowadays, individuals are more connected on the internet and hence, the need to use Routing Communication is essential.Routing chooses the routes along which Internet Protocol (IP) packets get from their source t
10 min read
Network Layer ProtocolsNetwork Layer is responsible for the transmission of data or communication from one host to another host connected in a network. Rather than describing how data is transferred, it implements the technique for efficient transmission. In order to provide efficient communication protocols are used at t
9 min read
Transport Layer
Session Layer & Presentation Layer
Session Layer in OSI modelThe Session Layer is the 5th layer in the Open System Interconnection (OSI) model which plays an important role in controlling the dialogues (connections) between computers. This layer is responsible for setting up, coordinating, and terminating conversations, exchanges, and dialogues between the ap
6 min read
Presentation Layer in OSI modelPresentation Layer is the 6th layer in the Open System Interconnection (OSI) model. This layer is also known as Translation layer, as this layer serves as a data translator for the network. The data which this layer receives from the Application Layer is extracted and manipulated here as per the req
4 min read
Secure Socket Layer (SSL)SSL or Secure Sockets Layer, is an Internet security protocol that encrypts data to keep it safe. It was created by Netscape in 1995 to ensure privacy, authentication, and data integrity in online communications. SSL is the older version of what we now call TLS (Transport Layer Security).Websites us
10 min read
PPTP Full Form - Point-to-Point Tunneling ProtocolPPTP Stands for Point-to-Point Tunneling Protocol is a widely used networking protocol designed to create a secure private connection over a public network like the internet. It is Developed by Microsoft and other tech companies in the 1990s It is one of the first protocols used for Virtual Private
5 min read
Multipurpose Internet Mail Extension (MIME) ProtocolMIME (Multipurpose Internet Mail Extensions) is a standard used to extend the format of email messages, allowing them to include more than just text. It enables the transmission of multimedia content such as images, audio, video, and attachments, within email messages, as well as other types of cont
4 min read
Application Layer
Application Layer in OSI ModelThe Application Layer of OSI (Open System Interconnection) model, is the top layer in this model and takes care of network communication. The application layer provides the functionality to send and receive data from users. It acts as the interface between the user and the application. The applicati
5 min read
Client-Server ModelThe Client-Server Model is a distributed application architecture that divides tasks or workloads between servers (providers of resources or services) and clients (requesters of those services). In this model, a client sends a request to a server for data, which is typically processed on the server
6 min read
World Wide Web (WWW)The World Wide Web (WWW), often called the Web, is a system of interconnected webpages and information that you can access using the Internet. It was created to help people share and find information easily, using links that connect different pages together. The Web allows us to browse websites, wat
6 min read
Introduction to Electronic MailIntroduction:Electronic mail, commonly known as email, is a method of exchanging messages over the internet. Here are the basics of email:An email address: This is a unique identifier for each user, typically in the format of [email protected] email client: This is a software program used to send,
4 min read
What is a Content Distribution Network and how does it work?Over the last few years, there has been a huge increase in the number of Internet users. YouTube alone has 2 Billion users worldwide, while Netflix has over 160 million users. Streaming content to such a wide demographic of users is no easy task. One can think that a straightforward approach to this
4 min read
Protocols in Application LayerThe Application Layer is the topmost layer in the Open System Interconnection (OSI) model. This layer provides several ways for manipulating the data which enables any type of user to access the network with ease. The Application Layer interface directly interacts with the application and provides c
7 min read
Advanced Topics
What is Network Security?Every company or organization that handles a large amount of data, has a degree of solutions against many cyber threats. This is a broad, all-encompassing phrase that covers software and hardware solutions, as well as procedures, guidelines, and setups for network usage, accessibility, and general t
10 min read
Computer Network | Quality of Service and MultimediaQuality of Service (QoS) is an important concept, particularly when working with multimedia applications. Multimedia applications, such as video conferencing, streaming services, and VoIP (Voice over IP), require certain bandwidth, latency, jitter, and packet loss parameters. QoS methods help ensure
7 min read
Authentication in Computer NetworkPrerequisite - Authentication and Authorization Authentication is the process of verifying the identity of a user or information. User authentication is the process of verifying the identity of a user when that user logs in to a computer system. There are different types of authentication systems wh
4 min read
Encryption, Its Algorithms And Its FutureEncryption plays a vital role in todayâs digital world, serving a major role in modern cyber security. It involves converting plain text into cipher text, ensuring that sensitive information remains secure from unauthorized access. By making data unreadable to unauthorized parties, encryption helps
10 min read
Introduction of Firewall in Computer NetworkA firewall is a network security device either hardware or software-based which monitors all incoming and outgoing traffic and based on a defined set of security rules it accepts, rejects, or drops that specific traffic. It acts like a security guard that helps keep your digital world safe from unwa
10 min read
MAC Filtering in Computer NetworkThere are two kinds of network Adapters. A wired adapter allows us to set up a connection to a modem or router via Ethernet in a computer whereas a wireless adapter identifies and connects to remote hot spots. Each adapter has a distinct label known as a MAC address which recognizes and authenticate
10 min read
Wi-Fi Standards ExplainedWi-Fi stands for Wireless Fidelity, and it is developed by an organization called IEEE (Institute of Electrical and Electronics Engineers) they set standards for the Wi-Fi system. Each Wi-Fi network standard has two parameters : Speed - This is the data transfer rate of the network measured in Mbps
4 min read
What is Bluetooth?Bluetooth is used for short-range wireless voice and data communication. It is a Wireless Personal Area Network (WPAN) technology and is used for data communications over smaller distances. This generation changed into being invented via Ericson in 1994. It operates within the unlicensed, business,
6 min read
Generations of wireless communicationWe have made very huge improvements in wireless communication and have expanded the capabilities of our wireless communication system. We all have seen various generations in our life. Let's discuss them one by one. 0th Generation: Pre-cell phone mobile telephony technology, such as radio telephones
2 min read
Cloud NetworkingCloud Networking is a service or science in which a companyâs networking procedure is hosted on a public or private cloud. Cloud Computing is source management in which more than one computing resources share an identical platform and customers are additionally enabled to get entry to these resource
11 min read
Practice
Top 50 Plus Networking Interview Questions and Answers for 2024Networking is defined as connected devices that may exchange data or information and share resources. A computer network connects computers to exchange data via a communication media. Computer networking is the most often asked question at leading organizations such Cisco, Accenture, Uber, Airbnb, G
15+ min read
Top 50 TCP/IP Interview Questions and Answers 2025Understanding TCP/IP is essential for anyone working in IT or networking. It's a fundamental part of how the internet and most networks operate. Whether you're just starting or you're looking to move up in your career, knowing TCP/IP inside and out can really give you an edge.In this interview prepa
15+ min read
Top 50 IP Addressing Interview Questions and AnswersIn todayâs digital age, every device connected to the internet relies on a unique identifier called an IP Address. If youâre aiming for a career in IT or networking, mastering the concept of IP addresses is crucial. In this engaging blog post, weâll explore the most commonly asked IP address intervi
15+ min read
Last Minute Notes for Computer NetworksComputer Networks is an important subject in the GATE Computer Science syllabus. It encompasses fundamental concepts like Network Models, Routing Algorithms, Congestion Control, TCP/IP Protocol Suite, and Network Security. These topics are essential for understanding how data is transmitted, managed
14 min read
Computer Network - Cheat SheetA computer network is an interconnected computing device that can exchange data and share resources. These connected devices use a set of rules called communication protocols to transfer information over physical or wireless technology. Modern networks offer more than just connectivity. Enterprises
15+ min read