The Token Bucket algorithm is a popular and simple method used in computer networking and telecommunications for traffic shaping and rate limiting. It is designed to control the amount of data that a system can send or receive in some sort of period, ensuring that the traffic conforms to a specified rate.
It refers to traffic control mechanisms that seek to either differentiate performance based on application or network-operator requirements or provide predictable or guaranteed performance to applications, sessions, or traffic aggregates. It is something that data flow seeks to attain.
Need for Token Bucket Algorithm
- Video and audio conferencing require a bounded delay and loss rate.
- Video and audio streaming requires a bounded packet loss rate, it may not be so sensitive to delay.
- a -critical applications (real-time control) in which bounded delay is considered to be an important factor.
- Valuable applications should provide better services than less valuable applications.
Flow Characteristics of Token Bucket Algorithm
Four types of characteristics are attributed to a flow: reliability, delay, jitter, and bandwidth.
Types of Characteristics for Quality of Service
Reliability
It implies packet reached or not, information lost or not. Lack of reliability means losing a packet or acknowledgement, which entails re-transmission. Reliability requirements may differ from program to program. For example, it is more important that electronic mail, file transfer and internet access have reliable transmissions than telephony or audio conferencing.
Delay
It denotes source-to-destination delay. Different applications can tolerate delay in different degrees. Telephony, audio conferencing, video conferencing, and remote log-in need minimum delay, while delay in file transfer or e-mail is less important.
Jitter
Jitter is the variation in delay for packets belonging in same flow. High jitter means the difference between delays is large; low jitter means the variation is small. For example, if packets 0,1,2,3s arrive at 6,7,8,9s it represents same delay. Jitter would signify that packets departed at 0,1,2,3s reach destination at 4,6,10,15s. Audio and video applications don't allow jitter.
Bandwidth
Different applications need different bandwidths. In video conferencing we need to send millions of bits per second to refresh a color screen while the total number of bits in an e-mail may not reach even a million.
Techniques to Improve QoS
There are several ways to improve QoS like Scheduling and Traffic shaping ,We will see each and every part of this in brief.
Scheduling
Packets from different flows arrive at a switch or router for processing. A good scheduling technique treats the different flows in a fair and appropriate manner. Three scheduling techniques are:
- FIFO Queuing
- Priority Queuing
- Weighted Fair Queuing
To learn more about the scheduling techniques visit this article on packet queuing and dropping.
Traffic Shaping
It is a mechanism to control the amount and the rate of the traffic sent to the network. The techniques used to shape traffic are: leaky bucket and token bucket.
Difference Between Token Bucket Algorithm and Leaky Bucket Algorithm
The differences between leaky and token bucket algorithm are:
Token Bucket Algorithm
| Leaky Bucket Algorithm
|
---|
It depends on tokens.
| It does not depend on tokens.
|
If bucket is full, token is discarded but not the packet.
| If bucket is full, then packets are discarded.
|
Packets can only transmit when there are enough tokens.
| Packets are transmitted continuously.
|
Allows large bursts to be sent at faster rate. Bucket has maximum capacity.
| Sends the packet at a constant rate.
|
The bucket holds tokens generated at regular intervals of time.
| When the host has to send a packet , packet is thrown in bucket.
|
If there is a ready packet , a token is removed from Bucket and packet is send.
| Bursty traffic is converted into uniform traffic by leaky bucket.
|
If there is no token in the bucket, then the packet cannot be sent.
| In practice bucket is a finite queue outputs at finite rate.
|
Leaky bucket algorithm shapes bursty traffic into fixed-rate traffic by averaging the data rate. It may drop the packets if the bucket is full. But this technique is very restrictive. It does not credit an idle host. For example, if a host is not sending for a while, its bucket becomes empty. If the host has bursty data, the leaky bucket allows only an average rate. The time when the host is idle is not take into account. On the other hand, token bucket algorithm allows idle hosts to accumulate credit for the future in the form of tokens. And that is how it overcomes the shortcoming of leaky bucket algorithm.
Working of Token Bucket Algorithm
It allows bursty traffic at a regulated maximum rate. It allows idle hosts to accumulate credit for the future in the form of tokens. The system removes one token for every cell of data sent. For each tick of the clock the system send n tokens to the bucket. If n is 100 and host is idle for 100 ticks, bucket collects 10000 tokens. Host can now consume all these tokens with 10 cells per tick.
Token bucket can be easily implemented with a counter. The token is initiated to zero. Each time a token is added, counter is incremented to 1. Each time a unit of data is sent, counter is decremented by 1. When the counter is zero, host cannot send data.
Process depicting how token bucket algorithm worksSteps Involved in Token Bucket Algorithm
Step 1: Creation of Bucket: An imaginative bucket is assigned a fixed capacity, known as "rate limit". It can hold up to a certain number of tokens.
Step 2: Refill the Bucket: The bucket is dynamic; it gets periodically filled with tokens. Tokens are added to the bucket at a fixed rate.
Step 3: Incoming Requests: Upon receiving a request, we verify the presence of tokens in the bucket.
Step 4: Consume Tokens: If there are tokens in the bucket, we pick one token from it. This means the request is allowed to proceed. The time of token consumption is also recorded.
Step 5: Empty Bucket: If the bucket is depleted, meaning there are no tokens remaining, the request is denied. This precautionary measure prevents server or system overload, ensuring operation stays within predefined limits.
Advantage of Token Bucket over Leaky Bucket
- If a bucket is full in tokens, then tokens are discarded and not the packets. While in leaky bucket algorithm, packets are discarded.
- Token bucket can send large bursts at a faster rate while leaky bucket always sends packets at constant rate.
- Token bucket ensures predictable traffic shaping as it allows for setting token arrival rate and maximum token count. In leaky bucket, such control may not be present.
- Premium Quality of Service(QoS) is provided by prioritizing different traffic types through distinct token arrival rates. Such flexibility in prioritization is not provided by leaky bucket.
- Token bucket is suitable for high-speed data transfer or streaming video content as it allows transmission of large bursts of data. As leaky bucket operates at a constant rate, it can lead to less efficient bandwidth utilization.
- Token Bucket provides more granular control as administrators can adjust token arrival rate and maximum token count based on network requirements. Leaky Bucket has limited granularity in controlling traffic compared to Token Bucket.
Disadvantages of Token Bucket Algorithm
- Token Bucket has the tendency to generate tokens at a fixed rate, even when the network traffic is not present. This is leads of accumulation of unused tokens during times when there is no traffic, hence leading to wastage.
- Due to token accumulation, delays can introduced in the packet delivery. If the token bucket happens to be empty, packets will have to wait for new tokens, leading to increased latency and potential packet loss.
- Token Bucket happens to be less flexible than leaky bucket when it comes to network traffic shaping. The fixed token generation rate cannot be easily altered to meet changing network requirements, unlike the adaptable nature of leaky bucket.
- The implementation involved in token bucket can be more complex, especially due to the fact that different token generation rates are used for different traffic types. Configuration and management might be more difficult due to this.
- Usage of large bursts of data may lead to inefficient use of bandwidth, and may cause congestion. Leaky bucket algorithm, on the other hand helps prevent congestion by limiting the amount of data sent at any given time, promoting more efficient bandwidth utilization.
Similar Reads
Computer Network Tutorial A Computer Network is a system where two or more devices are linked together to share data, resources and information. These networks can range from simple setups, like connecting two devices in your home, to massive global systems, like the Internet. Below are some uses of computer networksSharing
6 min read
Computer Network Basics
Basics of Computer NetworkingA computer network is a collection of interconnected devices that share resources and information. These devices can include computers, servers, printers, and other hardware. Networks allow for the efficient exchange of data, enabling various applications such as email, file sharing, and internet br
11 min read
Types of Computer NetworksA computer network is a system that connects many independent computers to share information (data) and resources. The integration of computers and other different devices allows users to communicate more easily. It is a collection of two or more computer systems that are linked together. A network
7 min read
Introduction to InternetComputers and their structures are tough to approach, and it is made even extra tough when you want to recognize phrases associated with the difficulty this is already utilized in regular English, Network, and the net will appear to be absolutely wonderful from one some other, however, they may seem
10 min read
Types of Network TopologyNetwork topology refers to the arrangement of different elements like nodes, links, or devices in a computer network. Common types of network topology include bus, star, ring, mesh, and tree topologies, each with its advantages and disadvantages. In this article, we will discuss different types of n
11 min read
Network DevicesNetwork devices are physical devices that allow hardware on a computer network to communicate and interact with each other. Network devices like hubs, repeaters, bridges, switches, routers, gateways, and brouter help manage and direct data flow in a network. They ensure efficient communication betwe
9 min read
What is OSI Model? - Layers of OSI ModelThe OSI (Open Systems Interconnection) Model is a set of rules that explains how different computer systems communicate over a network. OSI Model was developed by the International Organization for Standardization (ISO). The OSI Model consists of 7 layers and each layer has specific functions and re
13 min read
TCP/IP ModelThe TCP/IP model is a framework that is used to model the communication in a network. It is mainly a collection of network protocols and organization of these protocols in different layers for modeling the network.It has four layers, Application, Transport, Network/Internet and Network Access.While
7 min read
Difference Between OSI Model and TCP/IP ModelData communication is a process or act in which we can send or receive data. Understanding the fundamental structures of networking is crucial for anyone working with computer systems and communication. For data communication two models are available, the OSI (Open Systems Interconnection) Model, an
5 min read
Physical Layer
Physical Layer in OSI ModelThe physical Layer is the bottom-most layer in the Open System Interconnection (OSI) Model which is a physical and electrical representation of the system. It consists of various network components such as power plugs, connectors, receivers, cable types, etc. The physical layer sends data bits from
4 min read
Types of Network TopologyNetwork topology refers to the arrangement of different elements like nodes, links, or devices in a computer network. Common types of network topology include bus, star, ring, mesh, and tree topologies, each with its advantages and disadvantages. In this article, we will discuss different types of n
11 min read
Transmission Modes in Computer Networks (Simplex, Half-Duplex and Full-Duplex)Transmission modes also known as communication modes, are methods of transferring data between devices on buses and networks designed to facilitate communication. They are classified into three types: Simplex Mode, Half-Duplex Mode, and Full-Duplex Mode. In this article, we will discuss Transmission
6 min read
Types of Transmission MediaTransmission media is the physical medium through which data is transmitted from one device to another within a network. These media can be wired or wireless. The choice of medium depends on factors like distance, speed, and interference. In this article, we will discuss the transmission media. In t
9 min read
Data Link Layer
Data Link Layer in OSI ModelThe data link layer is the second layer from the bottom in the OSI (Open System Interconnection) network architecture model. Responsible for the node-to-node delivery of data within the same local network. Major role is to ensure error-free transmission of information. Also responsible for encoding,
4 min read
What is Switching?Switching is the process of transferring data packets from one device to another in a network, or from one network to another, using specific devices called switches. A computer user experiences switching all the time for example, accessing the Internet from your computer device, whenever a user req
5 min read
Virtual LAN (VLAN)Virtual LAN (VLAN) is a concept in which we can divide the devices logically on layer 2 (data link layer). Generally, layer 3 devices divide the broadcast domain but the broadcast domain can be divided by switches using the concept of VLAN. A broadcast domain is a network segment in which if a devic
7 min read
Framing in Data Link LayerFrames are the units of digital transmission, particularly in computer networks and telecommunications. Frames are comparable to the packets of energy called photons in the case of light energy. Frame is continuously used in Time Division Multiplexing process. Framing is a point-to-point connection
6 min read
Error Control in Data Link LayerData-link layer uses the techniques of error control simply to ensure and confirm that all the data frames or packets, i.e. bit streams of data, are transmitted or transferred from sender to receiver with certain accuracy. Using or providing error control at this data link layer is an optimization,
4 min read
Flow Control in Data Link LayerFlow control is design issue at Data Link Layer. It is a technique that generally observes the proper flow of data from sender to receiver. It is very essential because it is possible for sender to transmit data or information at very fast rate and hence receiver can receive this information and pro
4 min read
Piggybacking in Computer NetworksPiggybacking is the technique of delaying outgoing acknowledgment temporarily and attaching it to the next data packet. When a data frame arrives, the receiver waits and does not send the control frame (acknowledgment) back immediately. The receiver waits until its network layer moves to the next da
5 min read
Network Layer
Network Layer in OSI ModelThe Network Layer is the 5th Layer from the top and the 3rd layer from the Bottom of the OSI Model. It is one of the most important layers which plays a key role in data transmission. The main job of this layer is to maintain the quality of the data and pass and transmit it from its source to its de
5 min read
Introduction of Classful IP AddressingAn IP address is an address that has information about how to reach a specific host, especially outside the LAN. An IP address is a 32-bit unique address having an address space of 232.Classful IP addressing is a way of organizing and managing IP addresses, which are used to identify devices on a ne
11 min read
Classless Addressing in IP AddressingThe Network address identifies a network on the internet. Using this, we can find a range of addresses in the network and total possible number of hosts in the network. Mask is a 32-bit binary number that gives the network address in the address block when AND operation is bitwise applied on the mas
7 min read
What is an IP Address?Imagine every device on the internet as a house. For you to send a letter to a friend living in one of these houses, you need their home address. In the digital world, this home address is what we call an IP (Internet Protocol) Address. It's a unique string of numbers separated by periods (IPv4) or
14 min read
IPv4 Datagram HeaderIP stands for Internet Protocol and v4 stands for Version Four (IPv4). IPv4 was the primary version brought into action for production within the ARPANET in 1983. IP version four addresses are 32-bit integers which will be expressed in decimal notation. In this article, we will discuss about IPv4 da
4 min read
Difference Between IPv4 and IPv6IPv4 and IPv6 are two versions of the system that gives devices a unique address on the internet, known as the Internet Protocol (IP). IP is like a set of rules that helps devices send and receive data online. Since the internet is made up of billions of connected devices, each one needs its own spe
7 min read
Difference between Private and Public IP addressesIP Address or Internet Protocol Address is a type of address that is required to communicate one computer with another computer for exchanging information, file, webpage, etc. Public and Private IP address are two important parts of device identity. In this article, we will see the differences betwe
6 min read
Introduction To SubnettingSubnetting is the process of dividing a large network into smaller networks called "subnets." Subnets provide each group of devices with their own space to communicate, which ultimately helps the network to work easily. This also boosts security and makes it easier to manage the network, as each sub
8 min read
What is Routing?The process of choosing a path across one or more networks is known as Network Routing. Nowadays, individuals are more connected on the internet and hence, the need to use Routing Communication is essential.Routing chooses the routes along which Internet Protocol (IP) packets get from their source t
10 min read
Network Layer ProtocolsNetwork Layer is responsible for the transmission of data or communication from one host to another host connected in a network. Rather than describing how data is transferred, it implements the technique for efficient transmission. In order to provide efficient communication protocols are used at t
9 min read
Transport Layer
Session Layer & Presentation Layer
Session Layer in OSI modelThe Session Layer is the 5th layer in the Open System Interconnection (OSI) model which plays an important role in controlling the dialogues (connections) between computers. This layer is responsible for setting up, coordinating, and terminating conversations, exchanges, and dialogues between the ap
6 min read
Presentation Layer in OSI modelPresentation Layer is the 6th layer in the Open System Interconnection (OSI) model. This layer is also known as Translation layer, as this layer serves as a data translator for the network. The data which this layer receives from the Application Layer is extracted and manipulated here as per the req
4 min read
Secure Socket Layer (SSL)SSL or Secure Sockets Layer, is an Internet security protocol that encrypts data to keep it safe. It was created by Netscape in 1995 to ensure privacy, authentication, and data integrity in online communications. SSL is the older version of what we now call TLS (Transport Layer Security).Websites us
10 min read
PPTP Full Form - Point-to-Point Tunneling ProtocolPPTP Stands for Point-to-Point Tunneling Protocol is a widely used networking protocol designed to create a secure private connection over a public network like the internet. It is Developed by Microsoft and other tech companies in the 1990s It is one of the first protocols used for Virtual Private
5 min read
Multipurpose Internet Mail Extension (MIME) ProtocolMIME (Multipurpose Internet Mail Extensions) is a standard used to extend the format of email messages, allowing them to include more than just text. It enables the transmission of multimedia content such as images, audio, video, and attachments, within email messages, as well as other types of cont
4 min read
Application Layer
Application Layer in OSI ModelThe Application Layer of OSI (Open System Interconnection) model, is the top layer in this model and takes care of network communication. The application layer provides the functionality to send and receive data from users. It acts as the interface between the user and the application. The applicati
5 min read
Client-Server ModelThe Client-Server Model is a distributed application architecture that divides tasks or workloads between servers (providers of resources or services) and clients (requesters of those services). In this model, a client sends a request to a server for data, which is typically processed on the server
6 min read
World Wide Web (WWW)The World Wide Web (WWW), often called the Web, is a system of interconnected webpages and information that you can access using the Internet. It was created to help people share and find information easily, using links that connect different pages together. The Web allows us to browse websites, wat
6 min read
Introduction to Electronic MailIntroduction:Electronic mail, commonly known as email, is a method of exchanging messages over the internet. Here are the basics of email:An email address: This is a unique identifier for each user, typically in the format of [email protected] email client: This is a software program used to send,
4 min read
What is a Content Distribution Network and how does it work?Over the last few years, there has been a huge increase in the number of Internet users. YouTube alone has 2 Billion users worldwide, while Netflix has over 160 million users. Streaming content to such a wide demographic of users is no easy task. One can think that a straightforward approach to this
4 min read
Protocols in Application LayerThe Application Layer is the topmost layer in the Open System Interconnection (OSI) model. This layer provides several ways for manipulating the data which enables any type of user to access the network with ease. The Application Layer interface directly interacts with the application and provides c
7 min read
Advanced Topics
What is Network Security?Every company or organization that handles a large amount of data, has a degree of solutions against many cyber threats. This is a broad, all-encompassing phrase that covers software and hardware solutions, as well as procedures, guidelines, and setups for network usage, accessibility, and general t
10 min read
Computer Network | Quality of Service and MultimediaQuality of Service (QoS) is an important concept, particularly when working with multimedia applications. Multimedia applications, such as video conferencing, streaming services, and VoIP (Voice over IP), require certain bandwidth, latency, jitter, and packet loss parameters. QoS methods help ensure
7 min read
Authentication in Computer NetworkPrerequisite - Authentication and Authorization Authentication is the process of verifying the identity of a user or information. User authentication is the process of verifying the identity of a user when that user logs in to a computer system. There are different types of authentication systems wh
4 min read
Encryption, Its Algorithms And Its FutureEncryption plays a vital role in todayâs digital world, serving a major role in modern cyber security. It involves converting plain text into cipher text, ensuring that sensitive information remains secure from unauthorized access. By making data unreadable to unauthorized parties, encryption helps
10 min read
Introduction of Firewall in Computer NetworkA firewall is a network security device either hardware or software-based which monitors all incoming and outgoing traffic and based on a defined set of security rules it accepts, rejects, or drops that specific traffic. It acts like a security guard that helps keep your digital world safe from unwa
10 min read
MAC Filtering in Computer NetworkThere are two kinds of network Adapters. A wired adapter allows us to set up a connection to a modem or router via Ethernet in a computer whereas a wireless adapter identifies and connects to remote hot spots. Each adapter has a distinct label known as a MAC address which recognizes and authenticate
10 min read
Wi-Fi Standards ExplainedWi-Fi stands for Wireless Fidelity, and it is developed by an organization called IEEE (Institute of Electrical and Electronics Engineers) they set standards for the Wi-Fi system. Each Wi-Fi network standard has two parameters : Speed - This is the data transfer rate of the network measured in Mbps
4 min read
What is Bluetooth?Bluetooth is used for short-range wireless voice and data communication. It is a Wireless Personal Area Network (WPAN) technology and is used for data communications over smaller distances. This generation changed into being invented via Ericson in 1994. It operates within the unlicensed, business,
6 min read
Generations of wireless communicationWe have made very huge improvements in wireless communication and have expanded the capabilities of our wireless communication system. We all have seen various generations in our life. Let's discuss them one by one. 0th Generation: Pre-cell phone mobile telephony technology, such as radio telephones
2 min read
Cloud NetworkingCloud Networking is a service or science in which a companyâs networking procedure is hosted on a public or private cloud. Cloud Computing is source management in which more than one computing resources share an identical platform and customers are additionally enabled to get entry to these resource
11 min read
Practice
Top 50 Plus Networking Interview Questions and Answers for 2024Networking is defined as connected devices that may exchange data or information and share resources. A computer network connects computers to exchange data via a communication media. Computer networking is the most often asked question at leading organizations such Cisco, Accenture, Uber, Airbnb, G
15+ min read
Top 50 TCP/IP Interview Questions and Answers 2025Understanding TCP/IP is essential for anyone working in IT or networking. It's a fundamental part of how the internet and most networks operate. Whether you're just starting or you're looking to move up in your career, knowing TCP/IP inside and out can really give you an edge.In this interview prepa
15+ min read
Top 50 IP Addressing Interview Questions and AnswersIn todayâs digital age, every device connected to the internet relies on a unique identifier called an IP Address. If youâre aiming for a career in IT or networking, mastering the concept of IP addresses is crucial. In this engaging blog post, weâll explore the most commonly asked IP address intervi
15+ min read
Last Minute Notes for Computer NetworksComputer Networks is an important subject in the GATE Computer Science syllabus. It encompasses fundamental concepts like Network Models, Routing Algorithms, Congestion Control, TCP/IP Protocol Suite, and Network Security. These topics are essential for understanding how data is transmitted, managed
14 min read
Computer Network - Cheat SheetA computer network is an interconnected computing device that can exchange data and share resources. These connected devices use a set of rules called communication protocols to transfer information over physical or wireless technology. Modern networks offer more than just connectivity. Enterprises
15+ min read