A LAN is a data communication network connecting various terminals or computers within a building or limited geographical area. The connection between the devices could be wired or wireless. Ethernet, Token rings, and Wireless LAN using IEEE 802.11 are examples of standard LAN technologies.In this article we will see ethernet in detail.
Ethernet
Ethernet is the most widely used LAN technology and is defined under IEEE standards 802.3. The reason behind its wide usability is that Ethernet is easy to understand, implement, and maintain, and allows low-cost network implementation. Also, Ethernet offers flexibility in terms of the topologies that are allowed. Ethernet generally uses a bus topology. Ethernet operates in two layers of the OSI model, the physical layer and the data link layer. For Ethernet, the protocol data unit is a frame since we mainly deal with DLLs. In order to handle collisions, the Access control mechanism used in Ethernet is CSMA/CD.
Although Ethernet has been largely replaced by wireless networks.A wired networking still uses Ethernet more frequently. Wi-Fi eliminates the need for cables by enabling users to connect their smartphones or laptops to a network wirelessly. The 802.11ac Wi-Fi standard offers faster maximum data transfer rates when compared to Gigabit Ethernet. However, wired connections are more secure and less susceptible to interference than wireless networks.
History of Ethernet
Robert Metcalfe's invention of Ethernet in 1973 completely changed computer networking. With Ethernet Version 2's support for 10 Mbps and an initial data rate of 2.94 Mbps, it first gained popularity in 1982. Ethernet's adoption was accelerated by the IEEE 802.3 standardization in 1983. Local area networks (LANs) and the internet were able to expand quickly because of the rapid evolution and advancement of Ethernet, which over time reached speeds of 100 Mbps, 1 Gbps, 10 Gbps, and higher. It evolved into the standard technology for wired network connections, enabling dependable and quick data transmission for private residences, commercial buildings, and data centers all over the world.
There are different types of Ethernet networks that are used to connect devices and transfer data.
Let's discuss them in simple terms:
- Fast Ethernet: This type of Ethernet network uses cables called twisted pair or CAT5. It can transfer data at a speed of around 100 Mbps (megabits per second). Fast Ethernet uses both fiber optic and twisted pair cables to enable communication. There are three categories of Fast Ethernet: 100BASE-TX, 100BASE-FX, and 100BASE-T4.
- Gigabit Ethernet: This is an upgrade from Fast Ethernet and is more common nowadays. It can transfer data at a speed of 1000 Mbps or 1 Gbps (gigabit per second). Gigabit Ethernet also uses fiber optic and twisted pair cables for communication. It often uses advanced cables like CAT5e, which can transfer data at a speed of 10 Gbps.
- 10-Gigabit Ethernet: This is an advanced and high-speed network that can transmit data at a speed of 10 gigabits per second. It uses special cables like CAT6a or CAT7 twisted-pair cables and fiber optic cables. With the help of fiber optic cables, this network can cover longer distances, up to around 10,000 meters.
- Switch Ethernet: This type of network involves using switches or hubs to improve network performance. Each workstation in this network has its own dedicated connection, which improves the speed and efficiency of data transfer. Switch Ethernet supports a wide range of speeds, from 10 Mbps to 10 Gbps, depending on the version of Ethernet being used.
In summary, Fast Ethernet is the basic version with a speed of 100 Mbps, Gigabit Ethernet is faster with a speed of 1 Gbps, 10-Gigabit Ethernet is even faster with a speed of 10 Gbps, and Switch Ethernet uses switches or hubs to enhance network performance.The Manchester Encoding Technique is used in Ethernet. Using Manchester encoding, data can be transmitted over a physical medium in communication systems. It is a type of line coding where the signal transitions, as opposed to the absolute voltage levels, serve as the data representation.
Each bit of information is split into two equal time periods, or "halves," in Manchester encoding. If the signal level is higher during the first half of the bit period than it is during the second, the result is a logic high (typically 1), or vice versa.

Since we are talking about IEEE 802.3 standard Ethernet, therefore, 0 is expressed by a high-to-low transition, a 1 by the low-to-high transition. In both Manchester Encoding and Differential Manchester, the Encoding Baud rate is double of bit rate.
Key Features of Ethernet
- Speed: Ethernet is capable of transmitting data at high speeds, with current Ethernet standards supporting speeds of up to 100 Gbps.
- Flexibility: Ethernet is a flexible technology that can be used with a wide range of devices and operating systems. It can also be easily scaled to accommodate a growing number of users and devices.
- Reliability: Ethernet is a reliable technology that uses error-correction techniques to ensure that data is transmitted accurately and efficiently.
- Cost-effectiveness: Ethernet is a cost-effective technology that is widely available and easy to implement. It is also relatively low-maintenance, requiring minimal ongoing support.
- Interoperability: Ethernet is an interoperable technology that allows devices from different manufacturers to communicate with each other seamlessly.
- Security: Ethernet includes built-in security features, including encryption and authentication, to protect data from unauthorized access.
- Manageability: Ethernet networks are easily managed, with various tools available to help network administrators monitor and control network traffic.
- Compatibility: Ethernet is compatible with a wide range of other networking technologies, making it easy to integrate with other systems and devices.
- Availability: Ethernet is a widely available technology that can be used in almost any setting, from homes and small offices to large data centers and enterprise-level networks.
- Simplicity: Ethernet is a simple technology that is easy to understand and use. It does not require specialized knowledge or expertise to set up and configure, making it accessible to a wide range of users.
- Standardization: Ethernet is a standardized technology, which means that all Ethernet devices and systems are designed to work together seamlessly. This makes it easier for network administrators to manage and troubleshoot Ethernet networks.
- Scalability: Ethernet is highly scalable, which means it can easily accommodate the addition of new devices, users, and applications without sacrificing performance or reliability.
- Broad compatibility: Ethernet is compatible with a wide range of protocols and technologies, including TCP/IP, HTTP, FTP, and others. This makes it a versatile technology that can be used in a variety of settings and applications.
- Ease of integration: Ethernet can be easily integrated with other networking technologies, such as Wi-Fi and Bluetooth, to create a seamless and integrated network environment.
- Ease of troubleshooting: Ethernet networks are easy to troubleshoot and diagnose, thanks to a range of built-in diagnostic and monitoring tools. This makes it easier for network administrators to identify and resolve issues quickly and efficiently.
- Support for multimedia: Ethernet supports multimedia applications, such as video and audio streaming, making it ideal for use in settings where multimedia content is a key part of the user experience.Ethernet is a reliable, cost-effective, and widely used LAN technology that offers high-speed connectivity and easy manageability for local networks.
Advantages of Ethernet
Speed: When compared to a wireless connection, Ethernet provides significantly more speed. Because Ethernet is a one-to-one connection, this is the case. As a result, speeds of up to 10 Gigabits per second (Gbps) or even 100 Gigabits per second (Gbps) are possible.
Efficiency: An Ethernet cable, such as Cat6, consumes less electricity, even less than a wifi connection. As a result, these ethernet cables are thought to be the most energy-efficient.
Good data transfer quality: Because it is resistant to noise, the information transferred is of high quality.
Baud rate = 2* Bit rate
Disadvantages of Ethernet
Distance limitations: Ethernet has distance limitations, with the maximum cable length for a standard Ethernet network being 100 meters. This means that it may not be suitable for larger networks that require longer distances.
Bandwidth sharing: Ethernet networks share bandwidth among all connected devices, which can result in reduced network speeds as the number of devices increases.
Security vulnerabilities: Although Ethernet includes built-in security features, it is still vulnerable to security breaches, including unauthorized access and data interception.
Complexity: Ethernet networks can be complex to set up and maintain, requiring specialized knowledge and expertise.
Compatibility issues: While Ethernet is generally interoperable with other networking technologies, compatibility issues can arise when integrating with older or legacy systems.
Cable installation: Ethernet networks require the installation of physical cables, which can be time-consuming and expensive to install.
Physical limitations: Ethernet networks require physical connections between devices, which can limit mobility and flexibility in network design.
How Ethernet Works?
In the Open Systems Interconnection (OSI) model, the Ethernet is located in the lower layers and facilitates the operation of the physical and data link layers. The OSI model consists of seven layers, which are as follows.
The topmost layer, known as the application layer, is what enables users to download and access data from email clients or web browsers. With the aid of the application, users enter their queries, and the request is then sent to the following layer, which is known as a "packet." The packet contains data about the sender and the destination web address. The packet is transmitted from the application layer until it reaches the bottom layer, also known as the Ethernet frame.
Similar Reads
Data Communication Tutorial Data communication plays an important role in today's interconnected world and enables the exchange of information between devices and networks. Whether you're sending an email, making a video call, or browsing the web, data communication ensures that information flows smoothly. This Data Communicat
5 min read
Basics of Data Communication
Data Communication - Definition, Components, Types, ChannelsTransferring data over a transmission medium between two or more devices, systems, or places is known as data communication. Nowadays, computing and telecommunications depend heavily on this data transmission, which makes a variety of applications conceivable, including email, video chatting, the In
7 min read
Types of Computer NetworksA computer network is a system that connects many independent computers to share information (data) and resources. The integration of computers and other different devices allows users to communicate more easily. It is a collection of two or more computer systems that are linked together. A network
11 min read
Transmission Modes in Computer Networks (Simplex, Half-Duplex and Full-Duplex)Transmission modes also known as communication modes, are methods of transferring data between devices on buses and networks designed to facilitate communication. They are classified into three types: Simplex Mode, Half-Duplex Mode, and Full-Duplex Mode. In this article, we will discuss Transmission
6 min read
Difference Between Serial and Parallel TransmissionData transmission is how computers and other devices send information to each other. There are two main ways to do this Serial and Parallel Transmission. In Serial Transmission, data is sent one bit at a time like sending a single line of people through a door. In Parallel Transmission data is sent
4 min read
How Data Encapsulation and De-encapsulation Works?Data encapsulation and de-encapsulation are fundamental concepts in computer networking and communication protocols. These processes are essential for transferring data across networks efficiently and securely. What is Data Encapsulation?Encapsulation is the process of adding additional information
4 min read
OSI Model
TCP/IP Model The TCP/IP model (Transmission Control Protocol/Internet Protocol) is a four-layer networking framework that enables reliable communication between devices over interconnected networks. It provides a standardized set of protocols for transmitting data across interconnected networks, ensuring efficie
7 min read
Data and Signals
Transmission of Signals
Transmission Impairment in Data CommunicationIn communication system, analog signals travel through transmission media, which tends to deteriorate the quality of analog signal, which means that the signal at the beginning of the medium is not the same as the signal at the end of the medium. The imperfection causes signal impairment. Below are
3 min read
What is Bandwidth? Definition, Working, Importance, UsesPre-Requisite: Introduction to Bandwidth Network bandwidth is the maximum capacity of a wired or wireless communications link to deliver data via a network connection in a given amount of time. Bandwidth is typically defined as the number of bits, kilobits, megabits, or gigabits that may be sent in
8 min read
Digital To Digital Conversion in Computer NetworkIn this article we will be discussing about digital-to-digital transmission in computer network i.e., how a digital data or information is converted into digital signal. The digital-to-digital encoding can be done by a technique called line coding. Line CodingThe process of converting the digital da
5 min read
Line CodingThe process of converting binary data into a sequence of bits of the digital signal is known as Line coding. It is also known as digital PAM formats. Need of Line coding: We always come across different types of data such as text, numbers, graphical images, audio, and video. These all data are store
2 min read
Analog to Digital ConversionDigital Signal: A digital signal is a signal that represents data as a sequence of discrete values; at any given time it can only take on one of a finite number of values. Analog Signal: An analog signal is any continuous signal for which the time varying feature of the signal is a representation of
6 min read
Digital to Analog ConversionDigital Signal - A digital signal is a signal that represents data as a sequence of discrete values; at any given time it can only take on one of a finite number of values. Analog Signal - An analog signal is any continuous signal for which the time varying feature of the signal is a representation
3 min read
Quadrature Amplitude ModulationQuadrature Amplitude Modulation (QAM) is a modulation technique that can be utilized in Analog modulation concepts and digital modulation concepts. It is a combination of ASK and PSK. So, in this article, we will discuss QAM, Analog QAM, Digital QAM, and many more. Quadrature Amplitude Modulation:Qu
5 min read
Analog to Analog Conversion (Modulation)Analog Signal: An analog signal is any continuous signal for which the time varying feature of the signal is a representation of some other time varying quantity i.e., analogous to another time varying Signal. Analog to Analog Conversion - Analog-to-analog conversion, or modulation, is the represent
3 min read
What is Modulation?Modulation can be digital or analog, the input wave of the analog signal varies continuously like a sine wave. Modulation can be defined as the process of converting data into waves by adding information to a carrier signal. Such a signal can be transmitted electronically or optically, but it must h
6 min read
Multiplexing
Transmission Media
Types of Transmission MediaTransmission media is the physical medium through which data is transmitted from one device to another within a network. These media can be wired or wireless. The choice of medium depends on factors like distance, speed, and interference. In this article, we will discuss the transmission media. In t
9 min read
Twisted-pair CableTwisted-pair Cable is a transmission media. Transmission media refers to the physical path or medium used to transmit data between devices. It can be divided into two parts: Guided Media and Unguided Media. In guided media, the signal is contained within the physical limits of the transmission mediu
4 min read
What is Coaxial Cable ?Coaxial cable is typically used by cable operators, telephone companies, and internet providers to transmit data, video, and voice communications to customers. Its installation and implementation are easy but it is less efficient than optical fiber also it provides moderately low bandwidth in compar
6 min read
Fiber Optics and TypesFiber Optics or Optical Fiber is a technology that transmits data as a light pulse along a glass or plastic fiber. An Optical Fiber is a cylindrical fiber of glass that is hair-thin in size or any transparent dielectric medium. The fiber which is used for optical communication is waveguides made of
6 min read
Difference between Twisted pair cable, Co-axial cable and Optical fiber cableA computer cable is a medium used to transmit data between devices such as computers, servers, routers, and switches. Cables physically connect these devices, enabling them to communicate within a network. In computer networking, it is very important to know the distinctions between the different ty
8 min read
Radio WavesRadio waves are a special type of energy that travels through space, carrying information without needing wires. They have the longest wavelengths in the electromagnetic spectrum, meaning they stretch out much farther than other waves like visible light or X-rays. These waves can be incredibly long,
9 min read
Infrared light for TransmissionInfrared light for Transmission :Infrared is the frequency of light that is not visible to the eyes .The frequency of the waves lies between three hundred gigacycles to four hundred THz. In this, the radiation is in the region of the electromagnetic spectrum . Infrared could be a communication mediu
3 min read
Difference between Guided and Unguided MediaNetwork media or transmission media refer to the physical pathways through which data is transmitted from one device to another within a network. These ways can be wired or wireless. The selection of media depends on factors like distance, speed, and interference. In this article, we will discuss th
4 min read
Error Detection and Correction
Channelization