Resource Conflicts Last Updated : 15 Nov, 2025 Comments Improve Suggest changes Like Article Like Report Resource conflicts in structural hazards occur when multiple instructions in a pipelined processor require access to the same hardware resource at the same time, but the hardware cannot support their simultaneous use. Structural hazards reduce the performance of the pipeline by forcing stalls and lowering instruction throughputUnderstanding resource conflicts helps us design better hardware and avoid unnecessary delays. Try to use one hardware unit at the same time, but only one copy of that unit exists.Causes of Resource ConflictsResource conflicts primarily arise in pipelined architectures due to:Insufficient hardware resources (e.g., only one ALU or shared memory for instruction and data access)Overlapping execution stages, where different stages of multiple instructions compete for the same resource in the same clock cycle.A common example is when one instruction is being fetched while another is accessing data memory, but if both share a single memory unit, one must wait—leading to a structural hazard.Example: Memory ConflictIf the processor uses a single memory unit, the following conflict occurs:Instruction in IF stage → needs memory for instruction fetchInstruction in MEM stage → needs memory for data read/writeSince there is only one memory, both cannot happen together → structural hazard.Effects of Resource ConflictsResource conflicts cause:Pipeline stalls (bubbles)Reduced throughputLower instruction-per-cycle (IPC)Increased execution timeThe processor must either wait or reorder operations to avoid crashes. Create Quiz Comment V vijaylcqkp Follow 0 Improve V vijaylcqkp Follow 0 Improve Article Tags : Computer Organization & Architecture Explore Basic Computer InstructionsWhat is a Computer? 6 min read Issues in Computer Design 1 min read Difference between assembly language and high level language 2 min read Addressing Modes in 8086 7 min read Difference between Memory based and Register based Addressing Modes 4 min read Von Neumann Architecture 5 min read Harvard Architecture 3 min read Interaction of a Program with Hardware 3 min read Simplified Instructional Computer (SIC) 4 min read Instruction Set used in simplified instructional Computer (SIC) 1 min read Instruction Set used in SIC/XE 2 min read RISC vs CISC 3 min read Vector processor classification 5 min read Essential Registers for Instruction Execution 3 min read Single Accumulator Based CPU Organization 3 min read Stack based CPU Organization 3 min read Machine Control Instructions in Microprocessor 4 min read Very Long Instruction Word (VLIW) Architecture 3 min read Input and Output SystemsPrimary Instruction Cycles 4 min read Machine Instructions 5 min read Instruction Formats 6 min read Difference between 2-address instruction and 1-address instructions 4 min read Difference between 3-address instruction and 0-address instruction 4 min read Register content and Flag status after Instructions 3 min read Debugging a machine level program 3 min read Vector Instruction Format in Vector Processors 7 min read Vector Instruction Types 4 min read Instruction Design and FormatALU Functions and Bus Organization 5 min read Computer Arithmetic | Set - 1 5 min read Computer Arithmetic | Set - 2 4 min read 1's Complement Representation vs 2's Complement Representation 4 min read Restoring Division Algorithm For Unsigned Integer 4 min read Non-Restoring Division For Unsigned Integer 3 min read Booth's Algorithm 4 min read How the Negative Numbers are Stored in Memory? 2 min read Microprogrammed ControlMicro-Operation 3 min read Instruction Set Architecture and Microarchitecture 3 min read Program Control Instructions 4 min read Difference between CALL and JUMP instructions 5 min read Hardwired and Micro-programmed Control Unit 3 min read Implementation of Micro Instructions Sequencer 4 min read Performance of Computer in Computer Organization 5 min read Introduction to Control Unit and its Design 5 min read Computer Organization | Amdahl's law and its proof 2 min read Subroutine: Nesting and Stack memory 3 min read Different Types of RAM (Random Access Memory ) 8 min read Random Access Memory (RAM) and Read Only Memory (ROM) 8 min read 2D and 2.5D Memory organization 4 min read Input and Output OrganizationPriority Interrupts 5 min read I/O Interface (Interrupt and DMA Mode) 4 min read DMA Controller 8257/8237 2 min read Computer Organization | Asynchronous input output synchronization 7 min read Programmable peripheral interface 8255 4 min read Synchronous Data Transfer in Computer Organization 4 min read Introduction of Input-Output Processor 5 min read MPU Communication in Computer Organization 4 min read Memory Mapped I/O and Isolated I/O 5 min read Memory OrganizationIntroduction to memory and memory units 2 min read Memory Hierarchy Design and its Characteristics 6 min read Register Allocations in Code Generation 6 min read Cache Memory 4 min read Cache Organization | Set 1 (Introduction) 3 min read Multilevel Cache Organisation 6 min read Difference between RAM and ROM 7 min read Difference Between CPU Cache and TLB 4 min read Introduction to Solid-State Drive (SSD) 4 min read Read and Write operations in Memory 3 min read PipeliningInstruction Level Parallelism 5 min read Execution and Throughput 5 min read Pipelining Types and Stalling 3 min read Computer Organization and Architecture | Pipelining | Set 2 (Dependencies and Data Hazard) 6 min read Last Minute Notes Computer Organization 15+ min read Like