Display all the Sundays of given year using Pandas in Python Last Updated : 10 Jul, 2020 Comments Improve Suggest changes Like Article Like Report Let's see how to display all the Sundays of a given year using Pandas. We will be using the date_range() function of the Pandas module. Algorithm : Import the pandas module. Fetch all the Sundays using the date_range() function, the parameters are : In order to display Sundays of 2020, start parameter is set as 2020-01-01. The parameter periods is set to 52 as there are approximately 52 weeks in a year. The parameter freq is set to W-SUN where W refers to weekly and SUN refers to Sunday. Print the fetched DateTimeIndex object. python3 # importing the module import pandas as pd # target year year = "2020" # instantiating the parameters start = year + "-01-01" periods = 52 freq = "W-SUN" # fetching the Sundays sundays = pd.date_range(start = start, periods = periods, freq = freq) # printing the Sundays print(sundays) Output : DatetimeIndex(['2020-01-05', '2020-01-12', '2020-01-19', '2020-01-26', '2020-02-02', '2020-02-09', '2020-02-16', '2020-02-23', '2020-03-01', '2020-03-08', '2020-03-15', '2020-03-22', '2020-03-29', '2020-04-05', '2020-04-12', '2020-04-19', '2020-04-26', '2020-05-03', '2020-05-10', '2020-05-17', '2020-05-24', '2020-05-31', '2020-06-07', '2020-06-14', '2020-06-21', '2020-06-28', '2020-07-05', '2020-07-12', '2020-07-19', '2020-07-26', '2020-08-02', '2020-08-09', '2020-08-16', '2020-08-23', '2020-08-30', '2020-09-06', '2020-09-13', '2020-09-20', '2020-09-27', '2020-10-04', '2020-10-11', '2020-10-18', '2020-10-25', '2020-11-01', '2020-11-08', '2020-11-15', '2020-11-22', '2020-11-29', '2020-12-06', '2020-12-13', '2020-12-20', '2020-12-27'], dtype='datetime64[ns]', freq='W-SUN') If we want to fetch any other day instead of Sunday, we can tweak the above program by changing the parameter freq to the desired day. python3 # importing the module import pandas as pd # target year year = "2020" # day to be fetched day = "MON" # instantiating the parameters start = year + "-01-01" periods = 52 freq = "W-" + day # fetching the days days = pd.date_range(start = start, periods = periods, freq = freq) # printing the days print(days) Output : DatetimeIndex(['2020-01-06', '2020-01-13', '2020-01-20', '2020-01-27', '2020-02-03', '2020-02-10', '2020-02-17', '2020-02-24', '2020-03-02', '2020-03-09', '2020-03-16', '2020-03-23', '2020-03-30', '2020-04-06', '2020-04-13', '2020-04-20', '2020-04-27', '2020-05-04', '2020-05-11', '2020-05-18', '2020-05-25', '2020-06-01', '2020-06-08', '2020-06-15', '2020-06-22', '2020-06-29', '2020-07-06', '2020-07-13', '2020-07-20', '2020-07-27', '2020-08-03', '2020-08-10', '2020-08-17', '2020-08-24', '2020-08-31', '2020-09-07', '2020-09-14', '2020-09-21', '2020-09-28', '2020-10-05', '2020-10-12', '2020-10-19', '2020-10-26', '2020-11-02', '2020-11-09', '2020-11-16', '2020-11-23', '2020-11-30', '2020-12-07', '2020-12-14', '2020-12-21', '2020-12-28'], dtype='datetime64[ns]', freq='W-MON') We may convert the DateTimeIndex object to a Series object to get a list of the days to be fetched. Python3 # importing the module import pandas as pd # target year year = "2020" # day to be fetched day = "WED" # instantiating the parameters start = year + "-01-01" periods = 52 freq = "W-" + day # fetching the days days = pd.Series(pd.date_range(start = start, periods = periods, freq = freq)) # printing the days print(days) Output : 0 2020-01-01 1 2020-01-08 2 2020-01-15 3 2020-01-22 4 2020-01-29 5 2020-02-05 6 2020-02-12 7 2020-02-19 8 2020-02-26 9 2020-03-04 10 2020-03-11 11 2020-03-18 12 2020-03-25 13 2020-04-01 14 2020-04-08 15 2020-04-15 16 2020-04-22 17 2020-04-29 18 2020-05-06 19 2020-05-13 20 2020-05-20 21 2020-05-27 22 2020-06-03 23 2020-06-10 24 2020-06-17 25 2020-06-24 26 2020-07-01 27 2020-07-08 28 2020-07-15 29 2020-07-22 30 2020-07-29 31 2020-08-05 32 2020-08-12 33 2020-08-19 34 2020-08-26 35 2020-09-02 36 2020-09-09 37 2020-09-16 38 2020-09-23 39 2020-09-30 40 2020-10-07 41 2020-10-14 42 2020-10-21 43 2020-10-28 44 2020-11-04 45 2020-11-11 46 2020-11-18 47 2020-11-25 48 2020-12-02 49 2020-12-09 50 2020-12-16 51 2020-12-23 dtype: datetime64[ns] Comment More infoAdvertise with us Next Article Display all the Sundays of given year using Pandas in Python G gauravbabbar25 Follow Improve Article Tags : Python Python-pandas Python pandas-datetime Practice Tags : python Similar Reads Create a Pandas TimeSeries to display all the Sundays of given year Suppose we need to find out all the Sundays in the year 2020. Then we use the panda module for that. If we need to find the time-series to display all Sundays, we use panda. Series() class, which is a 1-D labeled array capable of holding any data. Syntax: pandas.Series(data=None, index=None, dtype=N 2 min read How to display the days of the week for a particular year using Pandas? Given the day and the year. The task is to display all the days of the week of the given year. It can be found using the pandas.date_range() function. This function is used to get a fixed frequency DatetimeIndex. Syntax: pandas.date_range(start=None, end=None, periods=None, freq=None, tz=None, norma 2 min read How to check whether the day is a weekday or not using Pandas in Python? Python is a very popular language because it is suitable for almost any type of data science task. And Pandas is one of the popular python-based data analysis toolkits and also provides pandas.bdate_range() function to return a fixed frequency DatetimeIndex. This function Returns a fixed frequency D 2 min read Pandas Series dt.dayofyear | Get Day of Year in Pandas Pandas dt.dayofyear attribute returns the ordinal day of the year in the underlying DateTime data in the given Series object. Example: Python3 import pandas as pd sr = pd.Series(['2012-10-21 09:30', '2019-7-18 12:30', '2008-02-2 10:30', '2010-4-22 09:25', '2019-11-8 02:22']) idx = ['Day 1', 'Day 2', 2 min read Python | Pandas Series.dt.is_year_end Series.dt can be used to access the values of the series as datetimelike and return several properties. Pandas Series.dt.is_year_end attribute return a boolean value Indicating whether the date is the last day of a year. Syntax: Series.dt.is_year_end Parameter : None Returns : numpy array Example #1 2 min read Like