Convert BST to Min Heap Last Updated : 23 Jul, 2025 Comments Improve Suggest changes Like Article Like Report Given a binary search tree which is also a complete binary tree. The problem is to convert the given BST into a Min Heap with the condition that all the values in the left subtree of a node should be less than all the values in the right subtree of the node. This condition is applied to all the nodes, in the resultant converted Min Heap. Examples: Input: Output: Explanation: The given BST has been transformed into a Min Heap. All the nodes in the Min Heap satisfies the given condition, that is, values in the left subtree of a node should be less than the values in the right subtree of the node. Approach:The idea is to store the inorder traversal of the BST in array and then do preorder traversal of the BST and while doing preorder traversal copy the values of inorder traversal into the current node, as copying the sorted elements while doing preorder traversal will make sure that a min-heap is constructed with the condition that all the values in the left subtree of a node are less than all the values in the right subtree of the node.Follow the below steps to solve the problem:Create an array arr of size n, where n is the number of nodes in the given BST.Perform the inorder traversal of the BST and copy the node values in the arr[] in sorted order.Now perform the preorder traversal of the tree.While traversing the root during the preorder traversal, one by one copy the values from the array arr[] to the nodes of the BST.Below is the implementation of the above approach: C++ // C++ implementation to convert the given // BST to Min Heap #include <bits/stdc++.h> using namespace std; class Node { public: int data; Node* left; Node* right; Node(int x) { data = x; left = right = nullptr; } }; // Function to perform inorder traversal of BST // and store the node values in a vector void inorderTraversal(Node* root, vector<int>& inorderArr) { if (root == nullptr) { return; } // Traverse the left subtree Store the current // node value Traverse the right subtree inorderTraversal(root->left, inorderArr); inorderArr.push_back(root->data); inorderTraversal(root->right, inorderArr); } // Function to perform preorder traversal of the tree // and copy the values from the inorder array to nodes void preorderFill(Node* root, vector<int>& inorderArr, int& index) { if (root == nullptr) { return; } // Copy the next element from the inorder array root->data = inorderArr[index++]; // Fill left and right subtree preorderFill(root->left, inorderArr, index); preorderFill(root->right, inorderArr, index); } // Function to convert BST to Min Heap void convertBSTtoMinHeap(Node* root) { vector<int> inorderArr; // Step 1: Perform inorder traversal // to store values in sorted order inorderTraversal(root, inorderArr); int index = 0; // Step 2: Perform preorder traversal and // fill nodes with inorder values preorderFill(root, inorderArr, index); } // Function to print preorder traversal of the tree void preorderPrint(Node* root) { if (root == nullptr) { return; } cout << root->data << " "; preorderPrint(root->left); preorderPrint(root->right); } int main() { // Constructing the Binary Search Tree (BST) // 4 // / \ // 2 6 // / \ / \ // 1 3 5 7 Node* root = new Node(4); root->left = new Node(2); root->right = new Node(6); root->left->left = new Node(1); root->left->right = new Node(3); root->right->left = new Node(5); root->right->right = new Node(7); convertBSTtoMinHeap(root); preorderPrint(root); return 0; } Java // Java implementation to convert the given // BST to Min Heap import java.util.ArrayList; class Node { int data; Node left, right; Node(int x) { data = x; left = right = null; } } class GfG { // Function to perform inorder traversal of the BST // and store node values in an ArrayList static void inorderTraversal(Node root, ArrayList<Integer> inorderArr) { if (root == null) { return; } // Traverse the left subtree, store // the current node value, // and traverse the right subtree inorderTraversal(root.left, inorderArr); inorderArr.add(root.data); inorderTraversal(root.right, inorderArr); } // Function to perform preorder traversal of the tree // and copy the values from the inorder // ArrayList to the nodes static void preorderFill(Node root, ArrayList<Integer> inorderArr, int[] index) { if (root == null) { return; } // Copy the next element from the inorder array root.data = inorderArr.get(index[0]++); // Fill left and right subtree preorderFill(root.left, inorderArr, index); preorderFill(root.right, inorderArr, index); } // Function to convert BST to Min Heap static void convertBSTtoMinHeap(Node root) { ArrayList<Integer> inorderArr = new ArrayList<>(); // Step 1: Perform inorder traversal to // store values in sorted order inorderTraversal(root, inorderArr); // Using array to keep index as a reference int[] index = {0}; // Step 2: Perform preorder traversal and // fill nodes with inorder values preorderFill(root, inorderArr, index); } static void preorderPrint(Node root) { if (root == null) { return; } System.out.print(root.data + " "); preorderPrint(root.left); preorderPrint(root.right); } public static void main(String[] args) { // Constructing the Binary Search Tree (BST) // 4 // / \ // 2 6 // / \ / \ // 1 3 5 7 Node root = new Node(4); root.left = new Node(2); root.right = new Node(6); root.left.left = new Node(1); root.left.right = new Node(3); root.right.left = new Node(5); root.right.right = new Node(7); convertBSTtoMinHeap(root); preorderPrint(root); } } Python # Python implementation to convert the given # BST to Min Heap class Node: def __init__(self, data): self.data = data self.left = None self.right = None # Function to perform inorder traversal of the BST # and store the node values in a list def inorder_traversal(root, inorder_arr): if root is None: return # Traverse the left subtree, store the current # node value, and traverse the right subtree inorder_traversal(root.left, inorder_arr) inorder_arr.append(root.data) inorder_traversal(root.right, inorder_arr) # Function to perform preorder traversal of the tree # and copy the values from the inorder list to the nodes def preorder_fill(root, inorder_arr, index): if root is None: return index # Copy the next element from the inorder list root.data = inorder_arr[index] index += 1 # Fill left and right subtree index = preorder_fill(root.left, inorder_arr, index) index = preorder_fill(root.right, inorder_arr, index) return index # Function to convert BST to Min Heap def bstToMinHeap(root): inorder_arr = [] # Step 1: Perform inorder traversal to # store values in sorted order inorder_traversal(root, inorder_arr) # Step 2: Perform preorder traversal # and fill nodes with inorder values preorder_fill(root, inorder_arr, 0) # Function to print preorder traversal of the tree def preorder_print(root): if root is None: return print(root.data, end=" ") preorder_print(root.left) preorder_print(root.right) if __name__ == "__main__": # Constructing the Binary Search Tree (BST) # 4 # / \ # 2 6 # / \ / \ # 1 3 5 7 root = Node(4) root.left = Node(2) root.right = Node(6) root.left.left = Node(1) root.left.right = Node(3) root.right.left = Node(5) root.right.right = Node(7) bstToMinHeap(root) preorder_print(root) C# // C# implementation to convert the given // BST to Min Heap using System; using System.Collections.Generic; class Node { public int data; public Node left, right; public Node(int x) { data = x; left = right = null; } } class GfG { // Function to perform inorder traversal of the BST // and store the node values in a List static void InorderTraversal(Node root, List<int> inorderArr) { if (root == null) { return; } // Traverse the left subtree, store the // current node value, and traverse // the right subtree InorderTraversal(root.left, inorderArr); inorderArr.Add(root.data); InorderTraversal(root.right, inorderArr); } // Function to perform preorder traversal // of the tree and copy the values from the inorder // list to the nodes static void PreorderFill(Node root, List<int> inorderArr, ref int index) { if (root == null) { return; } // Copy the next element from the inorder list root.data = inorderArr[index++]; // Fill left and right subtree PreorderFill(root.left, inorderArr, ref index); PreorderFill(root.right, inorderArr, ref index); } // Function to convert BST to Min Heap static void ConvertBSTToMinHeap(Node root) { List<int> inorderArr = new List<int>(); // Step 1: Perform inorder traversal to // store values in sorted order InorderTraversal(root, inorderArr); int index = 0; // Step 2: Perform preorder traversal // and fill nodes with inorder values PreorderFill(root, inorderArr, ref index); } // Function to print preorder traversal of the tree static void PreorderPrint(Node root) { if (root == null) { return; } Console.Write(root.data + " "); PreorderPrint(root.left); PreorderPrint(root.right); } public static void Main() { // Constructing the Binary Search Tree (BST) // 4 // / \ // 2 6 // / \ / \ // 1 3 5 7 Node root = new Node(4); root.left = new Node(2); root.right = new Node(6); root.left.left = new Node(1); root.left.right = new Node(3); root.right.left = new Node(5); root.right.right = new Node(7); ConvertBSTToMinHeap(root); PreorderPrint(root); } } JavaScript // Javascript implementation to convert the given // BST to Min Heap class Node { constructor(data) { this.data = data; this.left = null; this.right = null; } } // Function to perform inorder traversal of the BST // and store the node values in an array function inorderTraversal(root, inorderArr) { if (root === null) { return; } // Traverse the left subtree, store the // current node value, and traverse // the right subtree inorderTraversal(root.left, inorderArr); inorderArr.push(root.data); inorderTraversal(root.right, inorderArr); } // Function to perform preorder traversal of the tree // and copy the values from the inorder // array to the nodes function preorderFill(root, inorderArr, index) { if (root === null) { return index; } // Copy the next element from the inorder array root.data = inorderArr[index]; index += 1; // Fill left and right subtree index = preorderFill(root.left, inorderArr, index); index = preorderFill(root.right, inorderArr, index); return index; } // Function to convert BST to Min Heap function convertBSTtoMinHeap(root) { let inorderArr = []; // Step 1: Perform inorder traversal to // store values in sorted order inorderTraversal(root, inorderArr); // Step 2: Perform preorder traversal // and fill nodes with inorder values preorderFill(root, inorderArr, 0); } // Function to print preorder traversal of the tree function preorderPrint(root) { if (root === null) { return; } console.log(root.data + " "); preorderPrint(root.left); preorderPrint(root.right); } // Constructing the Binary Search Tree (BST) // 4 // / \ // 2 6 // / \ / \ // 1 3 5 7 let root = new Node(4); root.left = new Node(2); root.right = new Node(6); root.left.left = new Node(1); root.left.right = new Node(3); root.right.left = new Node(5); root.right.right = new Node(7); convertBSTtoMinHeap(root); preorderPrint(root); Output1 2 3 4 5 6 7 Time Complexity: O(n), since inorder traversal and preorder filling both take O(n), where n is the number of nodes in the tree.Auxiliary Space: O(n), space is used for storing the inorder traversal in the array, also recursion stack uses O(h) space, where h is the height of the tree (O(log n) for balanced trees, O(n) for skewed trees). Comment More infoAdvertise with us Next Article Types of Asymptotic Notations in Complexity Analysis of Algorithms K kartik Improve Article Tags : Heap Binary Search Tree DSA Practice Tags : Binary Search TreeHeap Similar Reads Basics & PrerequisitesTime Complexity and Space ComplexityMany times there are more than one ways to solve a problem with different algorithms and we need a way to compare multiple ways. Also, there are situations where we would like to know how much time and resources an algorithm might take when implemented. To measure performance of algorithms, we typic 13 min read Types of Asymptotic Notations in Complexity Analysis of AlgorithmsWe have discussed Asymptotic Analysis, and Worst, Average, and Best Cases of Algorithms. The main idea of asymptotic analysis is to have a measure of the efficiency of algorithms that don't depend on machine-specific constants and don't require algorithms to be implemented and time taken by programs 8 min read Data StructuresGetting Started with Array Data StructureArray is a collection of items of the same variable type that are stored at contiguous memory locations. It is one of the most popular and simple data structures used in programming. Basic terminologies of ArrayArray Index: In an array, elements are identified by their indexes. Array index starts fr 14 min read String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut 2 min read Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The 2 min read Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List: 2 min read Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first 2 min read Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems 2 min read Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most 4 min read Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of 3 min read Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this 15+ min read AlgorithmsSearching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input 2 min read Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ 3 min read Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution 14 min read Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get 3 min read Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net 3 min read Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of 3 min read Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit 4 min read AdvancedSegment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree 3 min read Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i 2 min read GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br 2 min read Interview PreparationInterview Corner: All Resources To Crack Any Tech InterviewThis article serves as your one-stop guide to interview preparation, designed to help you succeed across different experience levels and company expectations. Here is what you should expect in a Tech Interview, please remember the following points:Tech Interview Preparation does not have any fixed s 3 min read GfG160 - 160 Days of Problem SolvingAre you preparing for technical interviews and would like to be well-structured to improve your problem-solving skills? Well, we have good news for you! GeeksforGeeks proudly presents GfG160, a 160-day coding challenge starting on 15th November 2024. In this event, we will provide daily coding probl 3 min read Practice ProblemGeeksforGeeks Practice - Leading Online Coding PlatformGeeksforGeeks Practice is an online coding platform designed to help developers and students practice coding online and sharpen their programming skills with the following features. GfG 160: This consists of most popular interview problems organized topic wise and difficulty with with well written e 6 min read Problem of The Day - Develop the Habit of CodingDo you find it difficult to develop a habit of Coding? If yes, then we have a most effective solution for you - all you geeks need to do is solve one programming problem each day without any break, and BOOM, the results will surprise you! Let us tell you how:Suppose you commit to improve yourself an 5 min read Like