AVL tree is a self-balancing Binary Search Tree (BST) where the difference between heights of left and right subtrees cannot be more than one for all nodes.
Insertion in an AVL Tree follows the same basic rules as in a Binary Search Tree (BST):
- A new key is placed in its correct position based on BST rules (left < node < right).
However, after the insertion, the balance factor of each node is checked during the path back up to the root. If any node becomes unbalanced (i.e., its balance factor becomes less than -1 or greater than +1), a rotation is required to restore the AVL property.
In an AVL Tree, rotations are used to maintain balance after insertion or deletion of nodes. The balance factor must be between -1
and 1
for all nodes. When this balance is violated, one of the following four types of rotations is applied:
Example of AVL Tree:
The above tree is AVL tree because the differences between the heights of left and right subtrees for every node are lies in the range -1 to +1.
Example of a Tree that is NOT an AVL Tree:
The above tree is not an AVL tree because the differences between the heights of the left and right subtrees for 8 and 12 are greater than 1.
Why AVL Trees? Most of the BST operations (e.g., search, max, min, insert, delete, floor and ceiling) take O(h) time where h is the height of the BST. The cost of these operations may become O(n) for a skewed Binary tree. If we make sure that the height of the tree remains O(log(n)) after every insertion and deletion, then we can guarantee an upper bound of O(log(n)) for all these operations. The height of an AVL tree is always O(log(n)) where n is the number of nodes in the tree.
Insertion in AVL Tree:
To make sure that the given tree remains AVL after every insertion, we must augment the standard BST insert operation to perform some re-balancing. Following are two basic operations that can be performed to balance a BST without violating the BST property (keys(left) < key(root) < keys(right)).
- Left Rotation
- Right Rotation
keys(T1) < key(x) < keys(T2) < key(y) < keys(T3)Illustration of Insertion at AVL Tree:
Approach: The idea is to use recursive BST insert, after insertion, we get pointers to all ancestors one by one in a bottom-up manner. So we don't need a parent pointer to travel up. The recursive code itself travels up and visits all the ancestors of the newly inserted node.
Follow the steps mentioned below to implement the idea:
- Perform the normal BST insertion.
- The current node must be one of the ancestors of the newly inserted node. Update the height of the current node.
- Get the balance factor (left subtree height - right subtree height) of the current node.
- If the balance factor is greater than 1, then the current node is unbalanced and we are either in the Left Left case or left Right case. To check whether it is left left case or not, compare the newly inserted key with the key in the left subtree root.
- If the balance factor is less than -1, then the current node is unbalanced and we are either in the Right Right case or Right-Left case. To check whether it is the Right Right case or not, compare the newly inserted key with the key in the right subtree root.
Below is the implementation of the above approach:
C++14
// C++ program to insert a node in AVL tree
#include <bits/stdc++.h>
using namespace std;
// An AVL tree node
struct Node {
int key;
Node *left;
Node *right;
int height;
Node(int k) {
key = k;
left = nullptr;
right = nullptr;
height = 1;
}
};
// A utility function to
// get the height of the tree
int height(Node *N) {
if (N == nullptr)
return 0;
return N->height;
}
// A utility function to right
// rotate subtree rooted with y
Node *rightRotate(Node *y) {
Node *x = y->left;
Node *T2 = x->right;
// Perform rotation
x->right = y;
y->left = T2;
// Update heights
y->height = 1 + max(height(y->left),
height(y->right));
x->height = 1 + max(height(x->left),
height(x->right));
// Return new root
return x;
}
// A utility function to left rotate
// subtree rooted with x
Node *leftRotate(Node *x) {
Node *y = x->right;
Node *T2 = y->left;
// Perform rotation
y->left = x;
x->right = T2;
// Update heights
x->height = 1 + max(height(x->left),
height(x->right));
y->height = 1 + max(height(y->left),
height(y->right));
// Return new root
return y;
}
// Get balance factor of node N
int getBalance(Node *N) {
if (N == nullptr)
return 0;
return height(N->left) - height(N->right);
}
// Recursive function to insert a key in
// the subtree rooted with node
Node* insert(Node* node, int key) {
// Perform the normal BST insertion
if (node == nullptr)
return new Node(key);
if (key < node->key)
node->left = insert(node->left, key);
else if (key > node->key)
node->right = insert(node->right, key);
else // Equal keys are not allowed in BST
return node;
// Update height of this ancestor node
node->height = 1 + max(height(node->left),
height(node->right));
// Get the balance factor of this ancestor node
int balance = getBalance(node);
// If this node becomes unbalanced,
// then there are 4 cases
// Left Left Case
if (balance > 1 && key < node->left->key)
return rightRotate(node);
// Right Right Case
if (balance < -1 && key > node->right->key)
return leftRotate(node);
// Left Right Case
if (balance > 1 && key > node->left->key) {
node->left = leftRotate(node->left);
return rightRotate(node);
}
// Right Left Case
if (balance < -1 && key < node->right->key) {
node->right = rightRotate(node->right);
return leftRotate(node);
}
// Return the (unchanged) node pointer
return node;
}
// A utility function to print
// preorder traversal of the tree
void preOrder(Node *root) {
if (root != nullptr) {
cout << root->key << " ";
preOrder(root->left);
preOrder(root->right);
}
}
// Driver Code
int main() {
Node *root = nullptr;
// Constructing tree given in the above figure
root = insert(root, 10);
root = insert(root, 20);
root = insert(root, 30);
root = insert(root, 40);
root = insert(root, 50);
root = insert(root, 25);
/* The constructed AVL Tree would be
30
/ \
20 40
/ \ \
10 25 50
*/
// Preorder traversal
preOrder(root);
return 0;
}
C
// C program to insert a node in AVL tree
#include<stdio.h>
#include<stdlib.h>
// An AVL tree node
struct Node
{
int key;
struct Node *left;
struct Node *right;
int height;
};
// A utility function to get the height of the tree
int height(struct Node *N)
{
if (N == NULL)
return 0;
return N->height;
}
// A utility function to get maximum of two integers
int max(int a, int b)
{
return (a > b)? a : b;
}
/* Helper function that allocates a new node with the given key and
NULL left and right pointers. */
struct Node* newNode(int key)
{
struct Node* node = (struct Node*)
malloc(sizeof(struct Node));
node->key = key;
node->left = NULL;
node->right = NULL;
node->height = 1; // new node is initially added at leaf
return(node);
}
// A utility function to right rotate subtree rooted with y
// See the diagram given above.
struct Node *rightRotate(struct Node *y)
{
struct Node *x = y->left;
struct Node *T2 = x->right;
// Perform rotation
x->right = y;
y->left = T2;
// Update heights
y->height = max(height(y->left),
height(y->right)) + 1;
x->height = max(height(x->left),
height(x->right)) + 1;
// Return new root
return x;
}
// A utility function to left rotate subtree rooted with x
// See the diagram given above.
struct Node *leftRotate(struct Node *x)
{
struct Node *y = x->right;
struct Node *T2 = y->left;
// Perform rotation
y->left = x;
x->right = T2;
// Update heights
x->height = max(height(x->left),
height(x->right)) + 1;
y->height = max(height(y->left),
height(y->right)) + 1;
// Return new root
return y;
}
// Get Balance factor of node N
int getBalance(struct Node *N)
{
if (N == NULL)
return 0;
return height(N->left) - height(N->right);
}
// Recursive function to insert a key in the subtree rooted
// with node and returns the new root of the subtree.
struct Node* insert(struct Node* node, int key)
{
/* 1. Perform the normal BST insertion */
if (node == NULL)
return(newNode(key));
if (key < node->key)
node->left = insert(node->left, key);
else if (key > node->key)
node->right = insert(node->right, key);
else // Equal keys are not allowed in BST
return node;
/* 2. Update height of this ancestor node */
node->height = 1 + max(height(node->left),
height(node->right));
/* 3. Get the balance factor of this ancestor
node to check whether this node became
unbalanced */
int balance = getBalance(node);
// If this node becomes unbalanced, then
// there are 4 cases
// Left Left Case
if (balance > 1 && key < node->left->key)
return rightRotate(node);
// Right Right Case
if (balance < -1 && key > node->right->key)
return leftRotate(node);
// Left Right Case
if (balance > 1 && key > node->left->key)
{
node->left = leftRotate(node->left);
return rightRotate(node);
}
// Right Left Case
if (balance < -1 && key < node->right->key)
{
node->right = rightRotate(node->right);
return leftRotate(node);
}
/* return the (unchanged) node pointer */
return node;
}
// A utility function to print preorder traversal
// of the tree.
// The function also prints height of every node
void preOrder(struct Node *root)
{
if(root != NULL)
{
printf("%d ", root->key);
preOrder(root->left);
preOrder(root->right);
}
}
/* Driver program to test above function*/
int main()
{
struct Node *root = NULL;
/* Constructing tree given in the above figure */
root = insert(root, 10);
root = insert(root, 20);
root = insert(root, 30);
root = insert(root, 40);
root = insert(root, 50);
root = insert(root, 25);
/* The constructed AVL Tree would be
30
/ \
20 40
/ \ \
10 25 50
*/
// Preorder traversal
preOrder(root);
return 0;
}
Java
// Java program to insert a node in AVL tree
import java.util.*;
class Node {
int key;
Node left;
Node right;
int height;
Node(int k) {
key = k;
left = null;
right = null;
height = 1;
}
}
class GfG {
// A utility function to get the
// height of the tree
static int height(Node N) {
if (N == null)
return 0;
return N.height;
}
// A utility function to right rotate
// subtree rooted with y
static Node rightRotate(Node y) {
Node x = y.left;
Node T2 = x.right;
// Perform rotation
x.right = y;
y.left = T2;
// Update heights
y.height = 1 + Math.max(height(y.left),
height(y.right));
x.height = 1 + Math.max(height(x.left),
height(x.right));
// Return new root
return x;
}
// A utility function to left rotate
// subtree rooted with x
static Node leftRotate(Node x) {
Node y = x.right;
Node T2 = y.left;
// Perform rotation
y.left = x;
x.right = T2;
// Update heights
x.height = 1 + Math.max(height(x.left),
height(x.right));
y.height = 1 + Math.max(height(y.left),
height(y.right));
// Return new root
return y;
}
// Get balance factor of node N
static int getBalance(Node N) {
if (N == null)
return 0;
return height(N.left) - height(N.right);
}
// Recursive function to insert a key in
// the subtree rooted with node
static Node insert(Node node, int key) {
// Perform the normal BST insertion
if (node == null)
return new Node(key);
if (key < node.key)
node.left = insert(node.left, key);
else if (key > node.key)
node.right = insert(node.right, key);
else // Equal keys are not allowed in BST
return node;
// Update height of this ancestor node
node.height = 1 + Math.max(height(node.left),
height(node.right));
// Get the balance factor of this ancestor node
int balance = getBalance(node);
// If this node becomes unbalanced,
// then there are 4 cases
// Left Left Case
if (balance > 1 && key < node.left.key)
return rightRotate(node);
// Right Right Case
if (balance < -1 && key > node.right.key)
return leftRotate(node);
// Left Right Case
if (balance > 1 && key > node.left.key) {
node.left = leftRotate(node.left);
return rightRotate(node);
}
// Right Left Case
if (balance < -1 && key < node.right.key) {
node.right = rightRotate(node.right);
return leftRotate(node);
}
// Return the (unchanged) node pointer
return node;
}
// A utility function to print preorder
// traversal of the tree
static void preOrder(Node root) {
if (root != null) {
System.out.print(root.key + " ");
preOrder(root.left);
preOrder(root.right);
}
}
// Driver code
public static void main(String[] args) {
Node root = null;
// Constructing tree given in the above figure
root = insert(root, 10);
root = insert(root, 20);
root = insert(root, 30);
root = insert(root, 40);
root = insert(root, 50);
root = insert(root, 25);
/* The constructed AVL Tree would be
30
/ \
20 40
/ \ \
10 25 50
*/
// Preorder traversal
preOrder(root);
}
}
Python
class Node:
def __init__(self, key):
self.key = key
self.left = None
self.right = None
self.height = 1
# A utility function to get the
# height of the tree
def height(node):
if not node:
return 0
return node.height
# A utility function to right rotate
# subtree rooted with y
def right_rotate(y):
x = y.left
T2 = x.right
# Perform rotation
x.right = y
y.left = T2
# Update heights
y.height = 1 + max(height(y.left), height(y.right))
x.height = 1 + max(height(x.left), height(x.right))
# Return new root
return x
# A utility function to left rotate
# subtree rooted with x
def left_rotate(x):
y = x.right
T2 = y.left
# Perform rotation
y.left = x
x.right = T2
# Update heights
x.height = 1 + max(height(x.left), height(x.right))
y.height = 1 + max(height(y.left), height(y.right))
# Return new root
return y
# Get balance factor of node N
def get_balance(node):
if not node:
return 0
return height(node.left) - height(node.right)
# Recursive function to insert a key in
# the subtree rooted with node
def insert(node, key):
# Perform the normal BST insertion
if not node:
return Node(key)
if key < node.key:
node.left = insert(node.left, key)
elif key > node.key:
node.right = insert(node.right, key)
else:
# Equal keys are not allowed in BST
return node
# Update height of this ancestor node
node.height = 1 + max(height(node.left), height(node.right))
# Get the balance factor of this ancestor node
balance = get_balance(node)
# If this node becomes unbalanced,
# then there are 4 cases
# Left Left Case
if balance > 1 and key < node.left.key:
return right_rotate(node)
# Right Right Case
if balance < -1 and key > node.right.key:
return left_rotate(node)
# Left Right Case
if balance > 1 and key > node.left.key:
node.left = left_rotate(node.left)
return right_rotate(node)
# Right Left Case
if balance < -1 and key < node.right.key:
node.right = right_rotate(node.right)
return left_rotate(node)
# Return the (unchanged) node pointer
return node
# A utility function to print preorder
# traversal of the tree
def pre_order(root):
if root:
print(root.key, end=" ")
pre_order(root.left)
pre_order(root.right)
# Driver code
root = None
# Constructing tree given in the above figure
root = insert(root, 10)
root = insert(root, 20)
root = insert(root, 30)
root = insert(root, 40)
root = insert(root, 50)
root = insert(root, 25)
# The constructed AVL Tree would be
# 30
# / \
# 20 40
# / \ \
# 10 25 50
# Preorder traversal
pre_order(root)
C#
using System;
class Node {
public int Key;
public Node Left;
public Node Right;
public int Height;
public Node(int key) {
Key = key;
Left = null;
Right = null;
Height = 1;
}
}
public class GfG {
// A utility function to get
// the height of the tree
static int Height(Node node) {
if (node == null)
return 0;
return node.Height;
}
// A utility function to right rotate
// subtree rooted with y
static Node RightRotate(Node y) {
Node x = y.Left;
Node T2 = x.Right;
// Perform rotation
x.Right = y;
y.Left = T2;
// Update heights
y.Height = 1 + Math.Max(Height(y.Left),
Height(y.Right));
x.Height = 1 + Math.Max(Height(x.Left),
Height(x.Right));
// Return new root
return x;
}
// A utility function to left rotate
// subtree rooted with x
static Node LeftRotate(Node x) {
Node y = x.Right;
Node T2 = y.Left;
// Perform rotation
y.Left = x;
x.Right = T2;
// Update heights
x.Height = 1 + Math.Max(Height(x.Left),
Height(x.Right));
y.Height = 1 + Math.Max(Height(y.Left),
Height(y.Right));
// Return new root
return y;
}
// Get balance factor of node N
static int GetBalance(Node node) {
if (node == null)
return 0;
return Height(node.Left) - Height(node.Right);
}
// Recursive function to insert a key in the
// subtree rooted with node
static Node Insert(Node node, int key) {
// Perform the normal BST insertion
if (node == null)
return new Node(key);
if (key < node.Key)
node.Left = Insert(node.Left, key);
else if (key > node.Key)
node.Right = Insert(node.Right, key);
else // Equal keys are not allowed in BST
return node;
// Update height of this ancestor node
node.Height = 1 + Math.Max(Height(node.Left),
Height(node.Right));
// Get the balance factor of this ancestor node
int balance = GetBalance(node);
// If this node becomes unbalanced,
// then there are 4 cases
// Left Left Case
if (balance > 1 && key < node.Left.Key)
return RightRotate(node);
// Right Right Case
if (balance < -1 && key > node.Right.Key)
return LeftRotate(node);
// Left Right Case
if (balance > 1 && key > node.Left.Key) {
node.Left = LeftRotate(node.Left);
return RightRotate(node);
}
// Right Left Case
if (balance < -1 && key < node.Right.Key) {
node.Right = RightRotate(node.Right);
return LeftRotate(node);
}
// Return the (unchanged) node pointer
return node;
}
// A utility function to print preorder
// traversal of the tree
static void PreOrder(Node root) {
if (root != null) {
Console.Write(root.Key + " ");
PreOrder(root.Left);
PreOrder(root.Right);
}
}
// Driver code
public static void Main() {
Node root = null;
// Constructing tree given in the above figure
root = Insert(root, 10);
root = Insert(root, 20);
root = Insert(root, 30);
root = Insert(root, 40);
root = Insert(root, 50);
root = Insert(root, 25);
/* The constructed AVL Tree would be
30
/ \
20 40
/ \ \
10 25 50
*/
// Preorder traversal
PreOrder(root);
}
}
JavaScript
class Node {
constructor(key) {
this.key = key;
this.left = null;
this.right = null;
this.height = 1;
}
}
// A utility function to get
// the height of the tree
function height(node) {
if (node === null) {
return 0;
}
return node.height;
}
// A utility function to right rotate
// subtree rooted with y
function rightRotate(y) {
const x = y.left;
const T2 = x.right;
// Perform rotation
x.right = y;
y.left = T2;
// Update heights
y.height = 1 + Math.max(height(y.left), height(y.right));
x.height = 1 + Math.max(height(x.left), height(x.right));
// Return new root
return x;
}
// A utility function to left rotate subtree rooted with x
function leftRotate(x) {
const y = x.right;
const T2 = y.left;
// Perform rotation
y.left = x;
x.right = T2;
// Update heights
x.height = 1 + Math.max(height(x.left), height(x.right));
y.height = 1 + Math.max(height(y.left), height(y.right));
// Return new root
return y;
}
// Get balance factor of node
function getBalance(node) {
if (node === null) {
return 0;
}
return height(node.left) - height(node.right);
}
// Recursive function to insert a key in
// the subtree rooted with node
function insert(node, key) {
// Perform the normal BST insertion
if (node === null) {
return new Node(key);
}
if (key < node.key) {
node.left = insert(node.left, key);
} else if (key > node.key) {
node.right = insert(node.right, key);
} else {
// Equal keys are not allowed in BST
return node;
}
// Update height of this ancestor node
node.height = 1 + Math.max(height(node.left), height(node.right));
// Get the balance factor of this ancestor node
const balance = getBalance(node);
// If this node becomes unbalanced, then there are 4 cases
// Left Left Case
if (balance > 1 && key < node.left.key) {
return rightRotate(node);
}
// Right Right Case
if (balance < -1 && key > node.right.key) {
return leftRotate(node);
}
// Left Right Case
if (balance > 1 && key > node.left.key) {
node.left = leftRotate(node.left);
return rightRotate(node);
}
// Right Left Case
if (balance < -1 && key < node.right.key) {
node.right = rightRotate(node.right);
return leftRotate(node);
}
// Return the (unchanged) node pointer
return node;
}
// A utility function to print preorder
// traversal of the tree
function preOrder(root) {
if (root !== null) {
console.log(root.key + " ");
preOrder(root.left);
preOrder(root.right);
}
}
// Driver code
let root = null;
// Constructing tree given in the above figure
root = insert(root, 10);
root = insert(root, 20);
root = insert(root, 30);
root = insert(root, 40);
root = insert(root, 50);
root = insert(root, 25);
/* The constructed AVL Tree would be
30
/ \
20 40
/ \ \
10 25 50
*/
// Preorder traversal
preOrder(root);
Time Complexity: O(logn), for Insertion
Auxiliary Space: O(logn), for recursion call stack as we have written a recursive method to insert
The rotation operations (left and right rotate) take constant time as only a few pointers are being changed there. Updating the height and getting the balance factor also takes constant time. So the time complexity of the AVL insert remains the same as the BST insert which is O(h) where h is the height of the tree. Since the AVL tree is balanced, the height is O(logn). So time complexity of AVL insert is O(logn).
Comparison with Red Black Tree:
The AVL tree and other self-balancing search trees like Red Black are useful to get all basic operations done in O(logn) time. The AVL trees are more balanced compared to Red-Black Trees, but they may cause more rotations during insertion and deletion. So if your application involves many frequent insertions and deletions, then Red Black trees should be preferred. And if the insertions and deletions are less frequent and search is the more frequent operation, then the AVL tree should be preferred over Red Black Tree.
AVL Tree | Set 2 (Deletion)
Similar Reads
Basics & Prerequisites
Data Structures
Getting Started with Array Data StructureArray is a collection of items of the same variable type that are stored at contiguous memory locations. It is one of the most popular and simple data structures used in programming. Basic terminologies of ArrayArray Index: In an array, elements are identified by their indexes. Array index starts fr
14 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem