Kth Smallest Element in an N-ary Tree
Last Updated :
23 Jul, 2025
Given an N-array Tree (Generic Tree) and an integer K, the task is to find the Kth smallest element in an N-array Tree.
Examples:
Input: 10
/ / \ \
2 34 56 100
/ \ | / | \
77 88 1 7 8 9
K = 3
Output: 7
Explanation: 7 is the 3rd smallest element in the tree. The first two smallest elements are 1 and 2 respectively.
Input: 1
/ \ \
2 3 4
/ \
5 6
K = 4
Output: 4
Approach: The problem can be solved by finding the smallest element in the given range K-times and keep updating the upper end of the range to the smallest element found so far. Follow the steps below to solve the problem:
- Initialize a global variable, say MinimumElement as INT_MAX.
- Declare a function smallestEleUnderRange(root, data) and perform he following operations:
- If root.data is more than data, then update MinimumElement as min of MinimumElement and root.data.
- Iterate over all children of the root. Call recursive function smallestEleUnderRange(child, data).
- Declare a function KthSmallestElement(root, k) to perform the following operations:
- Initialize a variable, say ans as INT_MIN, to store the Kth smallest element.
- Iterate over the range [0, K - 1] using a variable i and perform the following:
- Call smallestEleUnderRange(root, ans) function and then update ans as MinimumElement and then MinimumElement as INT_MAX.
- Finally, print ans as the required answer.
Below is the implementation of the above approach.
C++
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
// Structure of a node
class Node {
public:
int data;
vector<Node*> childs;
};
// Global variable set to Maximum
int MinimumElement = INT_MAX;
// Function that gives the smallest
// element under the range of key
void smallestEleUnderRange(Node* root,
int data)
{
if (root->data > data) {
MinimumElement = min(
root->data, MinimumElement);
}
for (Node* child : root->childs) {
smallestEleUnderRange(child, data);
}
}
// Function to find the Kth smallest element
int kthSmallestElement(Node* root, int k)
{
int ans = INT_MIN;
for (int i = 0; i < k; i++) {
smallestEleUnderRange(root, ans);
ans = MinimumElement;
MinimumElement = INT_MAX;
}
return ans;
}
// Function to create a new node
Node* newNode(int data)
{
Node* temp = new Node();
temp->data = data;
return temp;
}
// Driver Code
int main()
{
/* Let us create below tree
* 10
* / / \ \
* 2 34 56 100
* / \ | / | \
* 77 88 1 7 8 9
*/
Node* root = newNode(10);
(root->childs).push_back(newNode(2));
(root->childs).push_back(newNode(34));
(root->childs).push_back(newNode(56));
(root->childs).push_back(newNode(100));
(root->childs[0]->childs).push_back(newNode(77));
(root->childs[0]->childs).push_back(newNode(88));
(root->childs[2]->childs).push_back(newNode(1));
(root->childs[3]->childs).push_back(newNode(7));
(root->childs[3]->childs).push_back(newNode(8));
(root->childs[3]->childs).push_back(newNode(9));
cout << kthSmallestElement(root, 3);
return 0;
}
Java
// Java program for the above approach
import java.util.*;
public class Main
{
// Class containing left and
// right child of current
// node and key value
static class Node {
public int data;
public Vector<Node> childs;
public Node(int data)
{
this.data = data;
childs = new Vector<Node>();
}
}
// Global variable set to Maximum
static int MinimumElement = Integer.MAX_VALUE;
// Function that gives the smallest
// element under the range of key
static void smallestEleUnderRange(Node root, int data)
{
if (root.data > data) {
MinimumElement = Math.min(root.data, MinimumElement);
}
for(Node child : root.childs) {
smallestEleUnderRange(child, data);
}
}
// Function to find the Kth smallest element
static int kthSmallestElement(Node root, int k)
{
int ans = Integer.MIN_VALUE;
for (int i = 0; i < k; i++) {
smallestEleUnderRange(root, ans);
ans = MinimumElement;
MinimumElement = Integer.MAX_VALUE;
}
return ans;
}
// Function to create a new node
static Node newNode(int data)
{
Node temp = new Node(data);
return temp;
}
public static void main(String[] args) {
/* Let us create below tree
* 10
* / / \ \
* 2 34 56 100
* / \ | / | \
* 77 88 1 7 8 9
*/
Node root = newNode(10);
(root.childs).add(newNode(2));
(root.childs).add(newNode(34));
(root.childs).add(newNode(56));
(root.childs).add(newNode(100));
(root.childs.get(0).childs).add(newNode(77));
(root.childs.get(0).childs).add(newNode(88));
(root.childs.get(2).childs).add(newNode(1));
(root.childs.get(3).childs).add(newNode(7));
(root.childs.get(3).childs).add(newNode(8));
(root.childs.get(3).childs).add(newNode(9));
System.out.print(kthSmallestElement(root, 3));
}
}
// This code is contributed by mukesh07.
Python3
# Python3 program for the above approach
import sys
# Structure of a node
class Node:
def __init__(self, data):
self.data = data
self.childs = []
# Global variable set to Maximum
MinimumElement = sys.maxsize
# Function that gives the smallest
# element under the range of key
def smallestEleUnderRange(root, data):
global MinimumElement
if root.data > data:
MinimumElement = min(root.data, MinimumElement)
for child in range(len(root.childs)):
smallestEleUnderRange(root.childs[child], data)
# Function to find the Kth smallest element
def kthSmallestElement(root, k):
global MinimumElement
ans = -sys.maxsize
for i in range(k):
smallestEleUnderRange(root, ans)
ans = MinimumElement
MinimumElement = sys.maxsize
return ans
# Function to create a new node
def newNode(data):
temp = Node(data)
return temp
""" Let us create below tree
* 10
* / / \ \
* 2 34 56 100
* / \ | / | \
* 77 88 1 7 8 9
"""
root = newNode(10)
(root.childs).append(newNode(2))
(root.childs).append(newNode(34))
(root.childs).append(newNode(56))
(root.childs).append(newNode(100))
(root.childs[0].childs).append(newNode(77))
(root.childs[0].childs).append(newNode(88))
(root.childs[2].childs).append(newNode(1))
(root.childs[3].childs).append(newNode(7))
(root.childs[3].childs).append(newNode(8))
(root.childs[3].childs).append(newNode(9))
print(kthSmallestElement(root, 3))
# This code is contributed by divyesh072019.
C#
// C# program for the above approach
using System;
using System.Collections.Generic;
class GFG {
// Class containing left and
// right child of current
// node and key value
class Node {
public int data;
public List<Node> childs;
public Node(int data)
{
this.data = data;
childs = new List<Node>();
}
}
// Global variable set to Maximum
static int MinimumElement = Int32.MaxValue;
// Function that gives the smallest
// element under the range of key
static void smallestEleUnderRange(Node root, int data)
{
if (root.data > data) {
MinimumElement = Math.Min(root.data, MinimumElement);
}
foreach(Node child in root.childs) {
smallestEleUnderRange(child, data);
}
}
// Function to find the Kth smallest element
static int kthSmallestElement(Node root, int k)
{
int ans = Int32.MinValue;
for (int i = 0; i < k; i++) {
smallestEleUnderRange(root, ans);
ans = MinimumElement;
MinimumElement = Int32.MaxValue;
}
return ans;
}
// Function to create a new node
static Node newNode(int data)
{
Node temp = new Node(data);
return temp;
}
static void Main() {
/* Let us create below tree
* 10
* / / \ \
* 2 34 56 100
* / \ | / | \
* 77 88 1 7 8 9
*/
Node root = newNode(10);
(root.childs).Add(newNode(2));
(root.childs).Add(newNode(34));
(root.childs).Add(newNode(56));
(root.childs).Add(newNode(100));
(root.childs[0].childs).Add(newNode(77));
(root.childs[0].childs).Add(newNode(88));
(root.childs[2].childs).Add(newNode(1));
(root.childs[3].childs).Add(newNode(7));
(root.childs[3].childs).Add(newNode(8));
(root.childs[3].childs).Add(newNode(9));
Console.Write(kthSmallestElement(root, 3));
}
}
// This code is contributed by divyeshrabadiya07.
JavaScript
<script>
// Javascript program for the above approach
// Structure of a node
class Node
{
constructor(data) {
this.childs = [];
this.data = data;
}
}
// Global variable set to Maximum
let MinimumElement = Number.MAX_VALUE;
// Function that gives the smallest
// element under the range of key
function smallestEleUnderRange(root, data)
{
if (root.data > data) {
MinimumElement = Math.min(root.data, MinimumElement);
}
for(let child = 0; child < (root.childs).length; child++) {
smallestEleUnderRange(root.childs[child], data);
}
}
// Function to find the Kth smallest element
function kthSmallestElement(root, k)
{
let ans = Number.MIN_VALUE;
for (let i = 0; i < k; i++) {
smallestEleUnderRange(root, ans);
ans = MinimumElement;
MinimumElement = Number.MAX_VALUE;
}
return ans;
}
// Function to create a new node
function newNode(data)
{
let temp = new Node(data);
return temp;
}
/* Let us create below tree
* 10
* / / \ \
* 2 34 56 100
* / \ | / | \
* 77 88 1 7 8 9
*/
let root = newNode(10);
(root.childs).push(newNode(2));
(root.childs).push(newNode(34));
(root.childs).push(newNode(56));
(root.childs).push(newNode(100));
(root.childs[0].childs).push(newNode(77));
(root.childs[0].childs).push(newNode(88));
(root.childs[2].childs).push(newNode(1));
(root.childs[3].childs).push(newNode(7));
(root.childs[3].childs).push(newNode(8));
(root.childs[3].childs).push(newNode(9));
document.write(kthSmallestElement(root, 3));
// This code is contributed by rameshtravel07.
</script>
Time Complexity: O(N * K) where N is the number of nodes in the given tree.
Auxiliary Space: O(1), but the recursion stack uses a maximum of O(N) space.
Explore
DSA Fundamentals
Data Structures
Algorithms
Advanced
Interview Preparation
Practice Problem