Sort an Array of Strings in Lexicographical order
Last Updated :
23 Jul, 2025
Given an array of strings arr[] of size n, the task is to sort all the strings in lexicographical order.
Examples:
Input: arr[] = ["banana", "apple", "cherry"]
Output: ["apple", "banana", "cherry"]
Explanation: All strings are sorted alphabetically. "apple" comes before "banana", and "banana" before "cherry".
Input: arr[] = ["dog", "cat", "bat"]
Output: ["bat", "cat", "dog"]
Explanation: "bat" is the smallest, followed by "cat", and then "dog" in lexicographical order.
Input: arr[] = ["geeks", "for", "geeksforgeeks"]
Output: ["for", "geeks", "geeksforgeeks"]
Using Inbuilt Sort - O(n*m*log(n)) Time and O(1) Space [m : Average Length]
The idea is to use inbuilt sort function that are optimized and handle string comparisons character by character. This eliminates the need for writing custom comparison logic. Strings are sorted based on their ASCII values, where uppercase letters come before lowercase.
C++
// C++ program to sort strings in lexicographical
// order Using Inbuilt Sort
#include <bits/stdc++.h>
using namespace std;
// Function to sort strings lexicographically
vector<string> sortStrings(vector<string>& arr) {
// Use inbuilt sort to arrange strings
sort(arr.begin(), arr.end());
return arr;
}
// Function to print the result in required format
void printArray(vector<string>& arr) {
cout << "[";
for (int i = 0; i < arr.size(); i++) {
cout << arr[i];
if (i < arr.size() - 1) {
cout << ", ";
}
}
cout << "]";
}
// Driver code
int main() {
vector<string> arr = {"geeksforgeeks", "geeks", "for"};
vector<string> res = sortStrings(arr);
printArray(res);
return 0;
}
Java
// Java program to sort strings in lexicographical
// order Using Inbuilt Sort
import java.util.*;
class GfG {
// Function to sort strings lexicographically
static String[] sortStrings(String[] arr) {
// Use inbuilt sort to arrange strings
Arrays.sort(arr);
return arr;
}
// Function to print the result in required format
static void printArray(String[] arr) {
System.out.print("[");
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i]);
if (i < arr.length - 1) {
System.out.print(", ");
}
}
System.out.print("]");
}
// Driver code
public static void main(String[] args) {
String[] arr = {"geeksforgeeks", "geeks", "for"};
String[] res = sortStrings(arr);
printArray(res);
}
}
Python
# Python program to sort strings in lexicographical
# order Using Inbuilt Sort
# Function to sort strings lexicographically
def sortStrings(arr):
# Use inbuilt sort to arrange strings
arr.sort()
return arr
# Function to print the result in required format
def printArray(arr):
print("[", end="")
for i in range(len(arr)):
print(arr[i], end="")
if i < len(arr) - 1:
print(", ", end="")
print("]")
# Driver code
if __name__ == '__main__':
arr = ["geeksforgeeks", "geeks", "for"]
res = sortStrings(arr)
printArray(res)
C#
// C# program to sort strings in lexicographical
// order Using Inbuilt Sort
using System;
class GfG {
// Function to sort strings lexicographically
public static string[] sortStrings(string[] arr) {
// Use inbuilt sort to arrange strings
Array.Sort(arr);
return arr;
}
// Function to print the result in required format
public static void printArray(string[] arr) {
Console.Write("[");
for (int i = 0; i < arr.Length; i++) {
Console.Write(arr[i]);
if (i < arr.Length - 1) {
Console.Write(", ");
}
}
Console.Write("]");
}
// Driver code
public static void Main() {
string[] arr = {"geeksforgeeks", "geeks", "for"};
string[] res = sortStrings(arr);
printArray(res);
}
}
JavaScript
// JavaScript program to sort strings in lexicographical
// order Using Inbuilt Sort
// Function to sort strings lexicographically
function sortStrings(arr) {
// Use inbuilt sort to arrange strings
arr.sort();
return arr;
}
// Function to print the result in required format
function printArray(arr) {
let output = "[";
for (let i = 0; i < arr.length; i++) {
output += arr[i];
if (i < arr.length - 1) {
output += ", ";
}
}
output += "]";
console.log(output);
}
// Driver code
let arr = ["geeksforgeeks", "geeks", "for"];
let res = sortStrings(arr);
printArray(res);
Output[for, geeks, geeksforgeeks]
Time Complexity: O(n*m*log(n)), where n is number of strings, m is average length.
Space Complexity: O(1), in-place sort uses constant extra space.
Using Merge Sort - O(n*m*log(n)) Time and O(n) Space
The idea is to sort a list of strings in lexicographical order using the Merge Sort technique. The thought process is based on divide-and-conquer, where the array is recursively divided until single elements remain.
C++
// C++ program to sort strings in lexicographical
// order using Merge Sort
#include <bits/stdc++.h>
using namespace std;
// Merge two sorted halves
void merge(vector<string>& arr, int left,
int mid, int right) {
int n1 = mid - left + 1;
int n2 = right - mid;
vector<string> leftArr(n1);
vector<string> rightArr(n2);
// Copy data to temporary arrays
for (int i = 0; i < n1; i++) {
leftArr[i] = arr[left + i];
}
for (int j = 0; j < n2; j++) {
rightArr[j] = arr[mid + 1 + j];
}
int i = 0, j = 0, k = left;
// Merge the two arrays back into arr
while (i < n1 && j < n2) {
if (leftArr[i] <= rightArr[j]) {
arr[k++] = leftArr[i++];
} else {
arr[k++] = rightArr[j++];
}
}
// Copy remaining elements
while (i < n1) {
arr[k++] = leftArr[i++];
}
while (j < n2) {
arr[k++] = rightArr[j++];
}
}
// Recursive merge sort function
void mergeSort(vector<string>& arr, int left, int right) {
if (left < right) {
int mid = left + (right - left) / 2;
// Sort first and second halves
mergeSort(arr, left, mid);
mergeSort(arr, mid + 1, right);
// Merge sorted halves
merge(arr, left, mid, right);
}
}
// Function to sort strings lexicographically
vector<string> sortStrings(vector<string>& arr) {
mergeSort(arr, 0, arr.size() - 1);
return arr;
}
// Function to print the result in required format
void printArray(vector<string>& arr) {
cout << "[";
for (int i = 0; i < arr.size(); i++) {
cout << arr[i];
if (i < arr.size() - 1) {
cout << ", ";
}
}
cout << "]";
}
// Driver code
int main() {
vector<string> arr = {"geeksforgeeks", "geeks", "for"};
vector<string> res = sortStrings(arr);
printArray(res);
return 0;
}
Java
// Java program to sort strings in lexicographical
// order using Merge Sort
import java.util.*;
class GfG {
// Merge two sorted halves
static void merge(String[] arr, int left,
int mid, int right) {
int n1 = mid - left + 1;
int n2 = right - mid;
String[] leftArr = new String[n1];
String[] rightArr = new String[n2];
// Copy data to temporary arrays
for (int i = 0; i < n1; i++) {
leftArr[i] = arr[left + i];
}
for (int j = 0; j < n2; j++) {
rightArr[j] = arr[mid + 1 + j];
}
int i = 0, j = 0, k = left;
// Merge the two arrays back into arr
while (i < n1 && j < n2) {
if (leftArr[i].compareTo(rightArr[j]) <= 0) {
arr[k++] = leftArr[i++];
} else {
arr[k++] = rightArr[j++];
}
}
// Copy remaining elements
while (i < n1) {
arr[k++] = leftArr[i++];
}
while (j < n2) {
arr[k++] = rightArr[j++];
}
}
// Recursive merge sort function
static void mergeSort(String[] arr, int left, int right) {
if (left < right) {
int mid = left + (right - left) / 2;
// Sort first and second halves
mergeSort(arr, left, mid);
mergeSort(arr, mid + 1, right);
// Merge sorted halves
merge(arr, left, mid, right);
}
}
// Function to sort strings lexicographically
static String[] sortStrings(String[] arr) {
mergeSort(arr, 0, arr.length - 1);
return arr;
}
// Function to print the result in required format
static void printArray(String[] arr) {
System.out.print("[");
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i]);
if (i < arr.length - 1) {
System.out.print(", ");
}
}
System.out.print("]");
}
public static void main(String[] args) {
String[] arr = {"geeksforgeeks", "geeks", "for"};
String[] res = sortStrings(arr);
printArray(res);
}
}
Python
# Python program to sort strings in lexicographical
# order using Merge Sort
# Merge two sorted halves
def merge(arr, left, mid, right):
n1 = mid - left + 1
n2 = right - mid
leftArr = arr[left:left + n1]
rightArr = arr[mid + 1:mid + 1 + n2]
i = j = 0
k = left
# Merge the two arrays back into arr
while i < n1 and j < n2:
if leftArr[i] <= rightArr[j]:
arr[k] = leftArr[i]
i += 1
else:
arr[k] = rightArr[j]
j += 1
k += 1
# Copy remaining elements
while i < n1:
arr[k] = leftArr[i]
i += 1
k += 1
while j < n2:
arr[k] = rightArr[j]
j += 1
k += 1
# Recursive merge sort function
def mergeSort(arr, left, right):
if left < right:
mid = left + (right - left) // 2
# Sort first and second halves
mergeSort(arr, left, mid)
mergeSort(arr, mid + 1, right)
# Merge sorted halves
merge(arr, left, mid, right)
# Function to sort strings lexicographically
def sortStrings(arr):
mergeSort(arr, 0, len(arr) - 1)
return arr
# Function to print the result in required format
def printArray(arr):
print("[", end="")
for i in range(len(arr)):
print(arr[i], end="")
if i < len(arr) - 1:
print(", ", end="")
print("]")
# Driver code
if __name__ == '__main__':
arr = ["geeksforgeeks", "geeks", "for"]
res = sortStrings(arr)
printArray(res)
C#
// C# program to sort strings in lexicographical
// order using Merge Sort
using System;
class GfG {
// Merge two sorted halves
static void merge(string[] arr, int left,
int mid, int right) {
int n1 = mid - left + 1;
int n2 = right - mid;
string[] leftArr = new string[n1];
string[] rightArr = new string[n2];
// Copy data to temporary arrays
for (int i = 0; i < n1; i++) {
leftArr[i] = arr[left + i];
}
for (int j = 0; j < n2; j++) {
rightArr[j] = arr[mid + 1 + j];
}
int k = left, x = 0, y = 0;
// Merge the two arrays back into arr
while (x < n1 && y < n2) {
if (String.Compare(leftArr[x], rightArr[y]) <= 0) {
arr[k++] = leftArr[x++];
} else {
arr[k++] = rightArr[y++];
}
}
// Copy remaining elements
while (x < n1) {
arr[k++] = leftArr[x++];
}
while (y < n2) {
arr[k++] = rightArr[y++];
}
}
// Recursive merge sort function
static void mergeSort(string[] arr, int left, int right) {
if (left < right) {
int mid = left + (right - left) / 2;
// Sort first and second halves
mergeSort(arr, left, mid);
mergeSort(arr, mid + 1, right);
// Merge sorted halves
merge(arr, left, mid, right);
}
}
// Function to sort strings lexicographically
static string[] sortStrings(string[] arr) {
mergeSort(arr, 0, arr.Length - 1);
return arr;
}
// Function to print the result in required format
static void printArray(string[] arr) {
Console.Write("[");
for (int i = 0; i < arr.Length; i++) {
Console.Write(arr[i]);
if (i < arr.Length - 1) {
Console.Write(", ");
}
}
Console.Write("]");
}
static void Main() {
string[] arr = {"geeksforgeeks", "geeks", "for"};
string[] res = sortStrings(arr);
printArray(res);
}
}
JavaScript
// JavaScript program to sort strings in lexicographical
// order using Merge Sort
// Merge two sorted halves
function merge(arr, left, mid, right) {
let n1 = mid - left + 1;
let n2 = right - mid;
let leftArr = arr.slice(left, left + n1);
let rightArr = arr.slice(mid + 1, mid + 1 + n2);
let i = 0, j = 0, k = left;
// Merge the two arrays back into arr
while (i < n1 && j < n2) {
if (leftArr[i] <= rightArr[j]) {
arr[k++] = leftArr[i++];
} else {
arr[k++] = rightArr[j++];
}
}
// Copy remaining elements
while (i < n1) {
arr[k++] = leftArr[i++];
}
while (j < n2) {
arr[k++] = rightArr[j++];
}
}
// Recursive merge sort function
function mergeSort(arr, left, right) {
if (left < right) {
let mid = Math.floor(left + (right - left) / 2);
// Sort first and second halves
mergeSort(arr, left, mid);
mergeSort(arr, mid + 1, right);
// Merge sorted halves
merge(arr, left, mid, right);
}
}
// Function to sort strings lexicographically
function sortStrings(arr) {
mergeSort(arr, 0, arr.length - 1);
return arr;
}
// Function to print the result in required format
function printArray(arr) {
let output = "[";
for (let i = 0; i < arr.length; i++) {
output += arr[i];
if (i < arr.length - 1) {
output += ", ";
}
}
output += "]";
console.log(output);
}
// Driver code
let arr = ["geeksforgeeks", "geeks", "for"];
let res = sortStrings(arr);
printArray(res);
Output[for, geeks, geeksforgeeks]
Time Complexity: O(n*m*log(n)), where n is number of strings, m is average length.
Space Complexity: O(n), extra space used during merge process.
Similar Reads
Basics & Prerequisites
Data Structures
Getting Started with Array Data StructureArray is a collection of items of the same variable type that are stored at contiguous memory locations. It is one of the most popular and simple data structures used in programming. Basic terminologies of ArrayArray Index: In an array, elements are identified by their indexes. Array index starts fr
14 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem