Euler's criterion (Check if square root under modulo p exists)
Last Updated :
01 Mar, 2023
Given a number 'n' and a prime p, find if square root of n under modulo p exists or not. A number x is square root of n under modulo p if (x*x)%p = n%p.
Examples :
Input: n = 2, p = 5
Output: false
There doesn't exist a number x such that
(x*x)%5 is 2
Input: n = 2, p = 7
Output: true
There exists a number x such that (x*x)%7 is
2. The number is 3.
A Naive Method is to try every number x where x varies from 2 to p-1. For every x, check if (x * x) % p is equal to n % p.
C++
// A Simple C++ program to check if square root of a number
// under modulo p exists or not
#include<iostream>
using namespace std;
// Returns true if square root of n under modulo p exists
bool squareRootExists(int n, int p)
{
n = n%p;
// One by one check all numbers from 2 to p-1
for (int x=2; x<p; x++)
if ((x*x)%p == n)
return true;
return false;
}
// Driver program to test
int main()
{
int p = 7;
int n = 2;
squareRootExists(n, p)? cout << "Yes": cout << "No";
return 0;
}
Java
// A Simple Java program to check if square
// root of a number under modulo p exists or not
import java.util.*;
class GFG
{
// Returns true if square root of n under
// modulo p exists
static boolean squareRootExists(int n, int p)
{
n = n % p;
// One by one check all numbers from 2
// to p-1
for (int x = 2; x < p; x++)
if ((x * x) % p == n)
return true;
return false;
}
// Driver program to test
public static void main (String[] args)
{
int p = 7;
int n = 2;
if(squareRootExists(n, p))
System.out.print("Yes");
else
System.out.print("No");
}
}
// This code is contributed by Anant Agarwal.
Python3
# A Simple Python 3 program to
# check if square root of a number
# under modulo p exists or not
# Returns true if square root of
# n under modulo p exists
def squareRootExists(n, p):
n = n % p
# One by one check all numbers
# from 2 to p-1
for x in range(2, p, 1):
if ((x * x) % p == n):
return True
return False
# Driver Code
if __name__ == '__main__':
p = 7
n = 2
if(squareRootExists(n, p) == True):
print("Yes")
else:
print("No")
# This code is contributed by
# Surendra_Gangwar
C#
// A Simple C# program to check
// if square root of a number
// under modulo p exists or not
using System;
class GFG
{
// Returns true if square root of
// n under modulo p exists
static bool squareRootExists(int n,
int p)
{
n = n % p;
// One by one check all numbers
// from 2 to p-1
for (int x = 2; x < p; x++)
if ((x * x) % p == n)
return true;
return false;
}
// Driver code
public static void Main ()
{
int p = 7;
int n = 2;
if(squareRootExists(n, p))
Console.WriteLine("Yes");
else
Console.WriteLine("No");
}
}
// This code is contributed by Sam007.
PHP
<?php
// A Simple PHP program to check
// if square root of a number
// under modulo p exists or not
// Returns true if square root
// of n under modulo p exists
function squareRootExists($n, $p)
{
$n = $n % $p;
// One by one check all
// numbers from 2 to p-1
for ($x = 2; $x < $p; $x++)
if (($x * $x) % $p == $n)
return true;
return false;
}
// Driver Code
$p = 7;
$n = 2;
if(squareRootExists($n, $p) == true)
echo "Yes";
else
echo "No";
// This code is contributed by ajit
?>
JavaScript
<script>
// A Simple Javascript program to check
// if square root of a number
// under modulo p exists or not
// Returns true if square root
// of n under modulo p exists
function squareRootExists(n, p)
{
n = n % p;
// One by one check all
// numbers from 2 to p-1
for(let x = 2; x < p; x++)
if ((x * x) % p == n)
return true;
return false;
}
// Driver Code
let p = 7;
let n = 2;
if (squareRootExists(n, p) === true)
document.write("Yes");
else
document.write("No");
// This code is contributed by _saurabh_jaiswal
</script>
Output :
Yes
Time Complexity of this method is O(p).
Space Complexity: O(1) since only constant variables being used
This problem has a direct solution based on Euler's Criterion.
Euler's criterion states that
Square root of n under modulo p exists if and only if
n(p-1)/2 % p = 1
Here square root of n exists means is, there exist
an integer x such that (x * x) % p = 1
Below is implementation based on above criterion. Refer Modular Exponentiation for power function.
C++
// C++ program to check if square root of a number
// under modulo p exists or not
#include<iostream>
using namespace std;
// Utility function to do modular exponentiation.
// It returns (x^y) % p.
int power(int x, int y, int p)
{
int res = 1; // Initialize result
x = x % p; // Update x if it is more than or
// equal to p
while (y > 0)
{
// If y is odd, multiply x with result
if (y & 1)
res = (res*x) % p;
// y must be even now
y = y>>1; // y = y/2
x = (x*x) % p;
}
return res;
}
// Returns true if there exists an integer x such
// that (x*x)%p = n%p
bool squareRootExists(int n, int p)
{
// Check for Euler's criterion that is
// [n ^ ((p-1)/2)] % p is 1 or not.
if (power(n, (p-1)/2, p) == 1)
return true;
return false;
}
// Driver program to test
int main()
{
int p = 7;
int n = 2;
squareRootExists(n, p)? cout << "Yes": cout << "No";
return 0;
}
Java
// Java program to check if
// square root of a number
// under modulo p exists or not
import java.io.*;
class GFG
{
// Utility function to do
// modular exponentiation.
// It returns (x^y) % p.
static int power(int x, int y, int p)
{
int res = 1; // Initialize result
x = x % p; // Update x if it is more
// than or equal to p
while (y > 0)
{
// If y is odd, multiply
// x with result
if ((y & 1) == 0)
res = (res * x) % p;
// y must be even now
y = y >> 1; // y = y/2
x = (x * x) % p;
}
return res;
}
// Returns true if there
// exists an integer x such
// that (x*x)%p = n%p
static boolean squareRootExists(int n,
int p)
{
// Check for Euler's criterion
// that is [n ^ ((p-1)/2)] % p
// is 1 or not.
if (power(n, (p - 1) / 2, p) == 1)
return true;
return false;
}
// Driver Code
public static void main (String[] args)
{
int p = 7;
int n = 2;
if(squareRootExists(n, p))
System.out.println ("Yes");
else
System.out.println("No");
}
}
// This code is contributed by ajit
Python3
# Python3 program to check if square root
# of a number under modulo p exists or not
# Utility function to do modular
# exponentiation. It returns (x^y) % p.
def power(x, y, p):
res = 1 # Initialize result
x = x % p
# Update x if it is more than
# or equal to p
while (y > 0):
# If y is odd, multiply
# x with result
if (y & 1):
res = (res * x) % p
# y must be even now
y = y >> 1 # y = y/2
x = (x * x) % p
return res
# Returns true if there exists an integer
# x such that (x*x)%p = n%p
def squareRootExists(n, p):
# Check for Euler's criterion that is
# [n ^ ((p-1)/2)] % p is 1 or not.
if (power(n, (int)((p - 1) / 2), p) == 1):
return True
return False
# Driver Code
p = 7
n = 2
if(squareRootExists(n, p) == True):
print("Yes")
else:
print("No")
# This code is contributed by Rajput-Ji
C#
// C# program to check if
// square root of a number
// under modulo p exists or not
using System;
class GFG
{
// Utility function to do
// modular exponentiation.
// It returns (x^y) % p.
static int power(int x,
int y, int p)
{
int res = 1;// Initialize result
x = x % p; // Update x if it is more
// than or equal to p
while (y > 0)
{
// If y is odd, multiply
// x with result
if ((y & 1) == 0)
res = (res * x) % p;
// y must be even now
y = y >> 1; // y = y/2
x = (x * x) % p;
}
return res;
}
// Returns true if there
// exists an integer x such
// that (x*x)%p = n%p
static bool squareRootExists(int n,
int p)
{
// Check for Euler's criterion
// that is [n ^ ((p-1)/2)] % p
// is 1 or not.
if (power(n, (p - 1) / 2, p) == 1)
return true;
return false;
}
// Driver Code
static public void Main ()
{
int p = 7;
int n = 2;
if(squareRootExists(n, p))
Console.WriteLine("Yes");
else
Console.WriteLine("No");
}
}
// This code is contributed by m_kit
PHP
<?php
// PHP program to check
// if square root of a
// number under modulo
// p exists or not
// Utility function to
// do modular exponentiation
// It returns (x^y) % p.
function power($x, $y, $p)
{
$res = 1; // Initialize result
$x = $x % $p; // Update x if it
// is more than
// or equal to p
while ($y > 0)
{
// If y is odd, multiply
// x with result
if ($y & 1)
$res = ($res *
$x) % $p;
// y must be even now
$y = $y >> 1; // y = y/2
$x = ($x * $x) % $p;
}
return $res;
}
// Returns true if there
// exists an integer x such
// that (x*x)%p = n%p
function squareRootExists($n, $p)
{
// Check for Euler's criterion
// that is [n ^ ((p-1)/2)] % p
// is 1 or not.
if (power($n, (int)(($p - 1) / 2),
$p) == 1)
return true;
return false;
}
// Driver Code
$p = 7;
$n = 2;
if(squareRootExists($n, $p) == true)
echo "Yes";
else
echo "No";
// This code is contributed by ajit
?>
JavaScript
<script>
// Javascript program to check if
// square root of a number
// under modulo p exists or not
// Utility function to do
// modular exponentiation.
// It returns (x^y) % p.
function power(x, y, p)
{
let res = 1;// Initialize result
x = x % p; // Update x if it is more
// than or equal to p
while (y > 0)
{
// If y is odd, multiply
// x with result
if ((y & 1) == 0)
res = (res * x) % p;
// y must be even now
y = y >> 1; // y = y/2
x = (x * x) % p;
}
return res;
}
// Returns true if there
// exists an integer x such
// that (x*x)%p = n%p
function squareRootExists(n, p)
{
// Check for Euler's criterion
// that is [n ^ ((p-1)/2)] % p
// is 1 or not.
if (power(n, (p - 1) / 2, p) == 1)
return true;
return false;
}
let p = 7;
let n = 2;
if(squareRootExists(n, p))
document.write("Yes");
else
document.write("No");
</script>
Output :
Yes
How does this work?
If p is a prime, then it must be an odd number and (p-1)
must be an even, i.e., (p-1)/2 must be an integer.
Suppose a square root of n under modulo p exists, then
there must exist an integer x such that,
x2 % p = n % p
or,
x2 ? n mod p
Raising both sides to power (p-1)/2,
(x2)(p-1)/2 ? n(p-1)/2 mod p
xp-1 ? n(p-1)/2 mod p
Since p is a prime, from Fermat's theorem, we can say that
xp-1 ? 1 mod p
Therefore,
n(p-1)/2 ? 1 mod p
Time Complexity: O(logp)
Auxiliary Space: O(1)
You may like to see below:
Find Square Root under Modulo p | Set 1 (When p is in form of 4*i + 3)
Similar Reads
Modular Arithmetic Modular arithmetic is a system of arithmetic for numbers where numbers "wrap around" after reaching a certain value, called the modulus. It mainly uses remainders to get the value after wrap around. It is often referred to as "clock arithmetic. As you can see, the time values wrap after reaching 12
10 min read
Modular Exponentiation (Power in Modular Arithmetic) Given three integers x, n, and M, compute (x^n) % M (remainder when x raised to the power n is divided by M).Examples : Input: x = 3, n = 2, M = 4Output: 1Explanation: 32 % 4 = 9 % 4 = 1.Input: x = 2, n = 6, M = 10Output: 4Explanation: 26 % 10 = 64 % 10 = 4.Table of Content[Naive Approach] Repeated
6 min read
Modular multiplicative inverse Given two integers A and M, find the modular multiplicative inverse of A under modulo M.The modular multiplicative inverse is an integer X such that:A X â¡ 1 (mod M) Note: The value of X should be in the range {1, 2, ... M-1}, i.e., in the range of integer modulo M. ( Note that X cannot be 0 as A*0 m
15+ min read
Multiplicative order In number theory, given an integer A and a positive integer N with gcd( A , N) = 1, the multiplicative order of a modulo N is the smallest positive integer k with A^k( mod N ) = 1. ( 0 < K < N ) Examples : Input : A = 4 , N = 7 Output : 3 explanation : GCD(4, 7) = 1 A^k( mod N ) = 1 ( smallest
7 min read
Modular Multiplication Given three integers a, b, and M, where M is the modulus. Compute the result of the modular multiplication of a and b under modulo M.((aÃb) mod M)Examples:Input: a = 5, b = 3, M = 11Output: 4Explanation: a à b = 5 à 3 = 15, 15 % 11 = 4, so the result is 4.Input: a = 12, b = 15, M = 7Output: 5Explana
6 min read
Modular Division Given three positive integers a, b, and M, the objective is to find (a/b) % M i.e., find the value of (a à b-1 ) % M, where b-1 is the modular inverse of b modulo M.Examples: Input: a = 10, b = 2, M = 13Output: 5Explanation: The modular inverse of 2 modulo 13 is 7, so (10 / 2) % 13 = (10 à 7) % 13 =
13 min read
Modulus on Negative Numbers The modulus operator, denoted as %, returns the remainder when one number (the dividend) is divided by another number (the divisor).Modulus of Positive NumbersProblem: What is 7 mod 5?Solution: From Quotient Remainder Theorem, Dividend=Divisor*Quotient + Remainder7 = 5*1 + 2, which gives 2 as the re
7 min read
Problems on Modular Arithmetic
Euler's criterion (Check if square root under modulo p exists)Given a number 'n' and a prime p, find if square root of n under modulo p exists or not. A number x is square root of n under modulo p if (x*x)%p = n%p. Examples : Input: n = 2, p = 5 Output: false There doesn't exist a number x such that (x*x)%5 is 2 Input: n = 2, p = 7 Output: true There exists a
11 min read
Find sum of modulo K of first N natural numberGiven two integer N ans K, the task is to find sum of modulo K of first N natural numbers i.e 1%K + 2%K + ..... + N%K. Examples : Input : N = 10 and K = 2. Output : 5 Sum = 1%2 + 2%2 + 3%2 + 4%2 + 5%2 + 6%2 + 7%2 + 8%2 + 9%2 + 10%2 = 1 + 0 + 1 + 0 + 1 + 0 + 1 + 0 + 1 + 0 = 5.Recommended PracticeReve
9 min read
How to compute mod of a big number?Given a big number 'num' represented as string and an integer x, find value of "num % a" or "num mod a". Output is expected as an integer. Examples : Input: num = "12316767678678", a = 10 Output: num (mod a) ? 8 The idea is to process all digits one by one and use the property that xy (mod a) ? ((x
4 min read
Exponential Squaring (Fast Modulo Multiplication)Given two numbers base and exp, we need to compute baseexp under Modulo 10^9+7 Examples: Input : base = 2, exp = 2Output : 4Input : base = 5, exp = 100000Output : 754573817In competitions, for calculating large powers of a number we are given a modulus value(a large prime number) because as the valu
12 min read
Trick for modular division ( (x1 * x2 .... xn) / b ) mod (m)Given integers x1, x2, x3......xn, b, and m, we are supposed to find the result of ((x1*x2....xn)/b)mod(m). Example 1: Suppose that we are required to find (55C5)%(1000000007) i.e ((55*54*53*52*51)/120)%1000000007 Naive Method : Simply calculate the product (55*54*53*52*51)= say x,Divide x by 120 a
9 min read
Modular MultiplicationGiven three integers a, b, and M, where M is the modulus. Compute the result of the modular multiplication of a and b under modulo M.((aÃb) mod M)Examples:Input: a = 5, b = 3, M = 11Output: 4Explanation: a à b = 5 à 3 = 15, 15 % 11 = 4, so the result is 4.Input: a = 12, b = 15, M = 7Output: 5Explana
6 min read
Difference between Modulo and ModulusIn the world of Programming and Mathematics we often encounter the two terms "Modulo" and "Modulus". In programming we use the operator "%" to perform modulo of two numbers. It basically finds the remainder when a number x is divided by another number N. It is denoted by : x mod N where x : Dividend
2 min read
Modulo Operations in Programming With Negative ResultsIn programming, the modulo operation gives the remainder or signed remainder of a division, after one integer is divided by another integer. It is one of the most used operators in programming. This article discusses when and why the modulo operation yields a negative result. Examples: In C, 3 % 2 r
15+ min read
Modulo 10^9+7 (1000000007)In most programming competitions, we are required to answer the result in 10^9+7 modulo. The reason behind this is, if problem constraints are large integers, only efficient algorithms can solve them in an allowed limited time.What is modulo operation: The remainder obtained after the division opera
10 min read
Fibonacci modulo pThe Fibonacci sequence is defined as F_i = F_{i-1} + F_{i-2} where F_1 = 1 and F_2 = 1 are the seeds. For a given prime number p, consider a new sequence which is (Fibonacci sequence) mod p. For example for p = 5, the new sequence would be 1, 1, 2, 3, 0, 3, 3, 1, 4, 0, 4, 4 ⦠The minimal zero of the
5 min read
Modulo of a large Binary StringGiven a large binary string str and an integer K, the task is to find the value of str % K.Examples: Input: str = "1101", K = 45 Output: 13 decimal(1101) % 45 = 13 % 45 = 13 Input: str = "11010101", K = 112 Output: 101 decimal(11010101) % 112 = 213 % 112 = 101 Approach: It is known that (str % K) wh
5 min read
Modular multiplicative inverse from 1 to nGive a positive integer n, find modular multiplicative inverse of all integer from 1 to n with respect to a big prime number, say, 'prime'. The modular multiplicative inverse of a is an integer 'x' such that. a x ? 1 (mod prime) Examples: Input : n = 10, prime = 17 Output : 1 9 6 13 7 3 5 15 2 12 Ex
9 min read
Modular exponentiation (Recursive)Given three numbers a, b and c, we need to find (ab) % cNow why do â% câ after exponentiation, because ab will be really large even for relatively small values of a, b and that is a problem because the data type of the language that we try to code the problem, will most probably not let us store suc
6 min read
Chinese Remainder Theorem
Introduction to Chinese Remainder TheoremWe are given two arrays num[0..k-1] and rem[0..k-1]. In num[0..k-1], every pair is coprime (gcd for every pair is 1). We need to find minimum positive number x such that: x % num[0] = rem[0], x % num[1] = rem[1], .......................x % num[k-1] = rem[k-1] Basically, we are given k numbers which
7 min read
Implementation of Chinese Remainder theorem (Inverse Modulo based implementation)We are given two arrays num[0..k-1] and rem[0..k-1]. In num[0..k-1], every pair is coprime (gcd for every pair is 1). We need to find minimum positive number x such that: x % num[0] = rem[0], x % num[1] = rem[1], ....................... x % num[k-1] = rem[k-1] Example: Input: num[] = {3, 4, 5}, rem[
11 min read
Cyclic Redundancy Check and Modulo-2 DivisionCyclic Redundancy Check or CRC is a method of detecting accidental changes/errors in the communication channel. CRC uses Generator Polynomial which is available on both sender and receiver side. An example generator polynomial is of the form like x3 + x + 1. This generator polynomial represents key
15+ min read
Using Chinese Remainder Theorem to Combine Modular equationsGiven N modular equations: A ? x1mod(m1) . . A ? xnmod(mn) Find x in the equation A ? xmod(m1*m2*m3..*mn) where mi is prime, or a power of a prime, and i takes values from 1 to n. The input is given as two arrays, the first being an array containing values of each xi, and the second array containing
12 min read