Exponential Squaring (Fast Modulo Multiplication)
Last Updated :
03 Oct, 2023
Given two numbers base and exp, we need to compute baseexp under Modulo 10^9+7
Examples:
Input : base = 2, exp = 2
Output : 4Input : base = 5, exp = 100000
Output : 754573817
In competitions, for calculating large powers of a number we are given a modulus value(a large prime number) because as the values of x^y
is being calculated it can get very large so instead we have to calculate (x^y
%modulus value.) We can use the modulus in our naive way by using modulus on all the intermediate steps and take modulus at the end, but in competitions it will definitely show TLE. So, what we can do. The answer is we can try exponentiation by squaring which is a fast method for calculating exponentiation of a number. Here we will be discussing two most common/important methods:
- Basic Method(Binary Exponentiation)
- 2^k
-ary method.
Binary Exponentiation
As described in this article we will be using following formula to recursively calculate (x^y
%modulus value): {\displaystyle x^{n}={\begin{cases}x\,(x^{2})^{\frac {n-1}{2}},&{\mbox{if }}n{\mbox{ is odd}}\\(x^{2})^{\frac {n}{2}},&{\mbox{if }}n{\mbox{ is even}}.\end{cases}}}
C++
// C++ program to compute exponential
// value under modulo using binary
// exponentiation.
#include<iostream>
using namespace std;
#define N 1000000007 // prime modulo value
long int exponentiation(long int base,
long int exp)
{
if (exp == 0)
return 1;
if (exp == 1)
return base % N;
long int t = exponentiation(base, exp / 2);
t = (t * t) % N;
// if exponent is even value
if (exp % 2 == 0)
return t;
// if exponent is odd value
else
return ((base % N) * t) % N;
}
// Driver Code
int main()
{
long int base = 5;
long int exp = 100000;
long int modulo = exponentiation(base, exp);
cout << modulo << endl;
return 0;
}
// This Code is contributed by mits
Java
// Java program to compute exponential value under modulo
// using binary exponentiation.
import java.util.*;
import java.lang.*;
import java.io.*;
class exp_sq {
static long N = 1000000007L; // prime modulo value
public static void main(String[] args)
{
long base = 5;
long exp = 100000;
long modulo = exponentiation(base, exp);
System.out.println(modulo);
}
static long exponentiation(long base, long exp)
{
if (exp == 0)
return 1;
if (exp == 1)
return base % N;
long t = exponentiation(base, exp / 2);
t = (t * t) % N;
// if exponent is even value
if (exp % 2 == 0)
return t;
// if exponent is odd value
else
return ((base % N) * t) % N;
}
}
Python3
# Python3 program to compute
# exponential value under
# modulo using binary
# exponentiation.
# prime modulo value
N = 1000000007;
# Function code
def exponentiation(bas, exp):
if (exp == 0):
return 1;
if (exp == 1):
return bas % N;
t = exponentiation(bas, int(exp / 2));
t = (t * t) % N;
# if exponent is
# even value
if (exp % 2 == 0):
return t;
# if exponent is
# odd value
else:
return ((bas % N) * t) % N;
# Driver code
bas = 5;
exp = 100000;
modulo = exponentiation(bas, exp);
print(modulo);
# This code is contributed
# by mits
C#
// C# program to compute exponential
// value under modulo using binary
// exponentiation.
using System;
class GFG {
// prime modulo value
static long N = 1000000007L;
// Driver code
public static void Main()
{
long bas = 5;
long exp = 100000;
long modulo = exponentiation(bas, exp);
Console.Write(modulo);
}
static long exponentiation(long bas, long exp)
{
if (exp == 0)
return 1;
if (exp == 1)
return bas % N;
long t = exponentiation(bas, exp / 2);
t = (t * t) % N;
// if exponent is even value
if (exp % 2 == 0)
return t;
// if exponent is odd value
else
return ((bas % N) * t) % N;
}
}
// This code is contributed by nitin mittal.
JavaScript
<script>
// JavaScript program to compute
// exponential value under
// modulo using binary
// exponentiation.
// prime modulo value
let N = 1000000007;
// Function code
function exponentiation(base, exp){
if (exp == 0){
return 1;
}
if (exp == 1){
return (base % N);
}
let t = exponentiation(base,exp/2);
t = ((t * t) % N);
console.log(t);
// if exponent is
// even value
if (exp % 2 == 0){
return t;
}
// if exponent is
// odd value
else{
return ((base % N) * t) % N;
}
}
// Driver code
let base = 5;
let exp = 100000;
let modulo = exponentiation(base, exp);
document.write(modulo);
document.write(base);
// This code is contributed by Gautam goel (gautamgoel962)
</script>
PHP
<?php
// PHP program to compute exponential
// value under modulo using binary
// exponentiation.
// prime modulo value
$N = 1000000007;
// Function code
function exponentiation($bas, $exp)
{
global $N ;
if ($exp == 0)
return 1;
if ($exp == 1)
return $bas % $N;
$t = exponentiation($bas,
$exp / 2);
$t = ($t * $t) % $N;
// if exponent is
// even value
if ($exp % 2 == 0)
return $t;
// if exponent is
// odd value
else
return (($bas % $N) *
$t) % $N;
}
// Driver code
$bas = 5;
$exp = 100000;
$modulo = exponentiation($bas, $exp);
echo ($modulo);
// This code is contributed by ajit
?>
Output :
754573817
Time Complexity: O(log exp) since the binary exponentiation algorithm divides the exponent by 2 at each recursive call, resulting in a logarithmic number of recursive calls.
Space Complexity: O(log exp)
-ary method:
In this algorithm we will be expanding the exponent in base 2^k
(k>=1), which is somehow similar to above method except we are not using recursion this method uses comparatively less memory and time.
C++
// C++ program to compute exponential value using (2^k)
// -ary method.
#include<bits/stdc++.h>
using namespace std;
#define N 1000000007L; // prime modulo value
long exponentiation(long base, long exp)
{
long t = 1L;
while (exp > 0)
{
// for cases where exponent
// is not an even value
if (exp % 2 != 0)
t = (t * base) % N;
base = (base * base) % N;
exp /= 2;
}
return t % N;
}
// Driver code
int main()
{
long base = 5;
long exp = 100000;
long modulo = exponentiation(base, exp);
cout << (modulo);
return 0;
}
// This code is contributed by Rajput-Ji
Java
// Java program to compute exponential value using (2^k)
// -ary method.
import java.util.*;
import java.lang.*;
import java.io.*;
class exp_sq {
static long N = 1000000007L; // prime modulo value
public static void main(String[] args)
{
long base = 5;
long exp = 100000;
long modulo = exponentiation(base, exp);
System.out.println(modulo);
}
static long exponentiation(long base, long exp)
{
long t = 1L;
while (exp > 0) {
// for cases where exponent
// is not an even value
if (exp % 2 != 0)
t = (t * base) % N;
base = (base * base) % N;
exp /= 2;
}
return t % N;
}
}
Python3
# Python3 program to compute
# exponential value
# using (2^k) -ary method.
# prime modulo value
N = 1000000007;
def exponentiation(bas, exp):
t = 1;
while(exp > 0):
# for cases where exponent
# is not an even value
if (exp % 2 != 0):
t = (t * bas) % N;
bas = (bas * bas) % N;
exp = int(exp / 2);
return t % N;
# Driver Code
bas = 5;
exp = 100000;
modulo = exponentiation(bas,exp);
print(modulo);
# This code is contributed
# by mits
C#
// C# program to compute
// exponential value
// using (2^k) -ary method.
using System;
class GFG
{
// prime modulo value
static long N = 1000000007L;
static long exponentiation(long bas,
long exp)
{
long t = 1L;
while (exp > 0)
{
// for cases where exponent
// is not an even value
if (exp % 2 != 0)
t = (t * bas) % N;
bas = (bas * bas) % N;
exp /= 2;
}
return t % N;
}
// Driver Code
public static void Main ()
{
long bas = 5;
long exp = 100000;
long modulo = exponentiation(bas,
exp);
Console.WriteLine(modulo);
}
}
//This code is contributed by ajit
JavaScript
// JavaScript program to compute
// exponential value
// using (2^k) -ary method.
// prime modulo value
let N = 1000000007n;
function exponentiation(bas, exp)
{
let t = 1n;
while(exp > 0n)
{
// for cases where exponent
// is not an even value
if (exp % 2n != 0n)
t = (t * bas) % N;
bas = (bas * bas) % N;
exp >>= 1n;
}
return t % N;
}
// Driver Code
let bas = 5n;
let exp = 100000n;
let modulo = exponentiation(bas,exp);
console.log(Number(modulo));
// This code is contributed
// by phasing17
PHP
<?php
// PHP program to compute
// exponential value
// using (2^k) -ary method.
// prime modulo value
$N = 1000000007;
function exponentiation($bas,
$exp)
{
global $N;
$t = 1;
while ($exp > 0)
{
// for cases where exponent
// is not an even value
if ($exp % 2 != 0)
$t = ($t * $bas) % $N;
$bas = ($bas * $bas) % $N;
$exp = (int)$exp / 2;
}
return $t % $N;
}
// Driver Code
$bas = 5;
$exp = 100000;
$modulo = exponentiation($bas,
$exp);
echo ($modulo);
// This code is contributed
// by ajit
?>
Output :
754573817
Time Complexity: O(log exp)
Space Complexity: O(1)
Bit-Manipulation Method
The basic idea behind the algorithm is to use the binary representation of the exponent to compute the power in a faster way.
Specifically, if we can represent the exponent as a sum of powers of 2, then we can use the fact that x^(a+b) = x^a * x^b to compute the power.
Approach : The steps of the algorithm are as follows : 1. Initialize a result variable to 1, and a base variable to the given base value.
2. Convert the exponent to binary format.
3. Iterate over the bits of the binary representation of the exponent, from right to left.
4. For each bit, square the current value of the base. 5. If the current bit is 1, multiply the result variable by the current value of the base. 6. Divide the exponent by 2, discarding the remainder. 7. Continue the iteration until all bits of the exponent have been processed. 8. Return the result variable modulo the given modulus value.
C++
#include <bits/stdc++.h>
using namespace std;
const long long mod = 1000000007LL; // prime modulo value
long long squareMultiply(long long base, long long exp) {
long long b = 1LL;
long long A = base % mod;
if (exp & 1LL) {
b = base % mod;
}
exp >>= 1LL;
while (exp > 0) {
A = (A * A) % mod;
if (exp & 1LL) {
b = (A * b) % mod;
}
exp >>= 1LL;
}
return b % mod;
}
int main() {
long long base = 5LL;
long long exp = 100000LL;
long long modulo = squareMultiply(base, exp);
cout << modulo << endl;
return 0;
}
Java
// Java program to compute exponential value under modulo
// using Bit Manipulation.
import java.util.*;
import java.lang.*;
import java.io.*;
class exp_sq {
static long mod = 1000000007L; // prime modulo value
public static void main(String[] args)
{
long base = 5;
long exp = 100000;
long modulo = squareMultiply(base, exp);
System.out.println(modulo);
}
static long squareMultiply(long base, long exp)
{
long b = 1;
long A = base;
if((exp & 1) == 1){
b = base % mod;
}
exp = (exp >> 1);
while(exp > 0){
A = (A * A) % mod;
if((exp & 1) == 1){
b = (A * b) % mod;
}
exp = (exp >> 1);
}
return b % mod;
}
}
Python3
mod = 1000000007
# Function to square the multiply
def square_multiply(base, exp):
b = 1
A = base % mod
if exp & 1:
b = base % mod
exp >>= 1
while exp > 0:
A = (A * A) % mod
if exp & 1:
b = (A * b) % mod
exp >>= 1
return b % mod
# Driver Code
base = 5
exp = 100000
modulo = square_multiply(base, exp)
print(modulo)
C#
using System;
public class Program {
const long mod = 1000000007L; // prime modulo value
static long squareMultiply(long baseNum, long exponent)
{
long b = 1L;
long A = baseNum % mod;
if ((exponent & 1L) == 1L) {
b = baseNum % mod;
}
exponent >>= 1;
while (exponent > 0) {
A = (A * A) % mod;
if ((exponent & 1L) == 1L) {
b = (A * b) % mod;
}
exponent >>= 1;
}
return b % mod;
}
static public void Main()
{
long baseNum = 5L;
long exponent = 100000L;
long modulo = squareMultiply(baseNum, exponent);
Console.WriteLine(modulo);
}
}
JavaScript
const mod = 1000000007n; // prime modulo value (BigInt)
function squareMultiply(base, exp) {
let b = 1n; // Initialize b as BigInt
let A = base % mod;
if (exp & 1n) { // Check if exp is odd (using BigInt)
b = base % mod;
}
exp >>= 1n; // Right shift exp by 1 (using BigInt)
while (exp > 0n) {
A = (A * A) % mod;
if (exp & 1n) {
b = (A * b) % mod;
}
exp >>= 1n;
}
return b % mod;
}
const base = 5n; // Initialize base as BigInt
const exp = 100000n; // Initialize exp as BigInt
const modulo = squareMultiply(base, exp);
console.log(modulo.toString()); // Output the result
Time Complexity -- O( log(exp) )
Space Complexity -- O(1)
Applications: Besides fast calculation of x^y
this method have several other advantages, like it is used in cryptography, in calculating Matrix Exponentiation et cetera.
Similar Reads
Modular Arithmetic Modular arithmetic is a system of arithmetic for numbers where numbers "wrap around" after reaching a certain value, called the modulus. It mainly uses remainders to get the value after wrap around. It is often referred to as "clock arithmetic. As you can see, the time values wrap after reaching 12
10 min read
Modular Exponentiation (Power in Modular Arithmetic) Given three integers x, n, and M, compute (x^n) % M (remainder when x raised to the power n is divided by M).Examples : Input: x = 3, n = 2, M = 4Output: 1Explanation: 32 % 4 = 9 % 4 = 1.Input: x = 2, n = 6, M = 10Output: 4Explanation: 26 % 10 = 64 % 10 = 4.Table of Content[Naive Approach] Repeated
6 min read
Modular multiplicative inverse Given two integers A and M, find the modular multiplicative inverse of A under modulo M.The modular multiplicative inverse is an integer X such that:A X â¡ 1 (mod M) Note: The value of X should be in the range {1, 2, ... M-1}, i.e., in the range of integer modulo M. ( Note that X cannot be 0 as A*0 m
15+ min read
Multiplicative order In number theory, given an integer A and a positive integer N with gcd( A , N) = 1, the multiplicative order of a modulo N is the smallest positive integer k with A^k( mod N ) = 1. ( 0 < K < N ) Examples : Input : A = 4 , N = 7 Output : 3 explanation : GCD(4, 7) = 1 A^k( mod N ) = 1 ( smallest
7 min read
Modular Multiplication Given three integers a, b, and M, where M is the modulus. Compute the result of the modular multiplication of a and b under modulo M.((aÃb) mod M)Examples:Input: a = 5, b = 3, M = 11Output: 4Explanation: a à b = 5 à 3 = 15, 15 % 11 = 4, so the result is 4.Input: a = 12, b = 15, M = 7Output: 5Explana
6 min read
Modular Division Given three positive integers a, b, and M, the objective is to find (a/b) % M i.e., find the value of (a à b-1 ) % M, where b-1 is the modular inverse of b modulo M.Examples: Input: a = 10, b = 2, M = 13Output: 5Explanation: The modular inverse of 2 modulo 13 is 7, so (10 / 2) % 13 = (10 à 7) % 13 =
13 min read
Modulus on Negative Numbers The modulus operator, denoted as %, returns the remainder when one number (the dividend) is divided by another number (the divisor).Modulus of Positive NumbersProblem: What is 7 mod 5?Solution: From Quotient Remainder Theorem, Dividend=Divisor*Quotient + Remainder7 = 5*1 + 2, which gives 2 as the re
7 min read
Problems on Modular Arithmetic
Euler's criterion (Check if square root under modulo p exists)Given a number 'n' and a prime p, find if square root of n under modulo p exists or not. A number x is square root of n under modulo p if (x*x)%p = n%p. Examples : Input: n = 2, p = 5 Output: false There doesn't exist a number x such that (x*x)%5 is 2 Input: n = 2, p = 7 Output: true There exists a
11 min read
Find sum of modulo K of first N natural numberGiven two integer N ans K, the task is to find sum of modulo K of first N natural numbers i.e 1%K + 2%K + ..... + N%K. Examples : Input : N = 10 and K = 2. Output : 5 Sum = 1%2 + 2%2 + 3%2 + 4%2 + 5%2 + 6%2 + 7%2 + 8%2 + 9%2 + 10%2 = 1 + 0 + 1 + 0 + 1 + 0 + 1 + 0 + 1 + 0 = 5.Recommended PracticeReve
9 min read
How to compute mod of a big number?Given a big number 'num' represented as string and an integer x, find value of "num % a" or "num mod a". Output is expected as an integer. Examples : Input: num = "12316767678678", a = 10 Output: num (mod a) ? 8 The idea is to process all digits one by one and use the property that xy (mod a) ? ((x
4 min read
Exponential Squaring (Fast Modulo Multiplication)Given two numbers base and exp, we need to compute baseexp under Modulo 10^9+7 Examples: Input : base = 2, exp = 2Output : 4Input : base = 5, exp = 100000Output : 754573817In competitions, for calculating large powers of a number we are given a modulus value(a large prime number) because as the valu
12 min read
Trick for modular division ( (x1 * x2 .... xn) / b ) mod (m)Given integers x1, x2, x3......xn, b, and m, we are supposed to find the result of ((x1*x2....xn)/b)mod(m). Example 1: Suppose that we are required to find (55C5)%(1000000007) i.e ((55*54*53*52*51)/120)%1000000007 Naive Method : Simply calculate the product (55*54*53*52*51)= say x,Divide x by 120 a
9 min read
Modular MultiplicationGiven three integers a, b, and M, where M is the modulus. Compute the result of the modular multiplication of a and b under modulo M.((aÃb) mod M)Examples:Input: a = 5, b = 3, M = 11Output: 4Explanation: a à b = 5 à 3 = 15, 15 % 11 = 4, so the result is 4.Input: a = 12, b = 15, M = 7Output: 5Explana
6 min read
Difference between Modulo and ModulusIn the world of Programming and Mathematics we often encounter the two terms "Modulo" and "Modulus". In programming we use the operator "%" to perform modulo of two numbers. It basically finds the remainder when a number x is divided by another number N. It is denoted by : x mod N where x : Dividend
2 min read
Modulo Operations in Programming With Negative ResultsIn programming, the modulo operation gives the remainder or signed remainder of a division, after one integer is divided by another integer. It is one of the most used operators in programming. This article discusses when and why the modulo operation yields a negative result. Examples: In C, 3 % 2 r
15+ min read
Modulo 10^9+7 (1000000007)In most programming competitions, we are required to answer the result in 10^9+7 modulo. The reason behind this is, if problem constraints are large integers, only efficient algorithms can solve them in an allowed limited time.What is modulo operation: The remainder obtained after the division opera
10 min read
Fibonacci modulo pThe Fibonacci sequence is defined as F_i = F_{i-1} + F_{i-2} where F_1 = 1 and F_2 = 1 are the seeds. For a given prime number p, consider a new sequence which is (Fibonacci sequence) mod p. For example for p = 5, the new sequence would be 1, 1, 2, 3, 0, 3, 3, 1, 4, 0, 4, 4 ⦠The minimal zero of the
5 min read
Modulo of a large Binary StringGiven a large binary string str and an integer K, the task is to find the value of str % K.Examples: Input: str = "1101", K = 45 Output: 13 decimal(1101) % 45 = 13 % 45 = 13 Input: str = "11010101", K = 112 Output: 101 decimal(11010101) % 112 = 213 % 112 = 101 Approach: It is known that (str % K) wh
5 min read
Modular multiplicative inverse from 1 to nGive a positive integer n, find modular multiplicative inverse of all integer from 1 to n with respect to a big prime number, say, 'prime'. The modular multiplicative inverse of a is an integer 'x' such that. a x ? 1 (mod prime) Examples: Input : n = 10, prime = 17 Output : 1 9 6 13 7 3 5 15 2 12 Ex
9 min read
Modular exponentiation (Recursive)Given three numbers a, b and c, we need to find (ab) % cNow why do â% câ after exponentiation, because ab will be really large even for relatively small values of a, b and that is a problem because the data type of the language that we try to code the problem, will most probably not let us store suc
6 min read
Chinese Remainder Theorem
Introduction to Chinese Remainder TheoremWe are given two arrays num[0..k-1] and rem[0..k-1]. In num[0..k-1], every pair is coprime (gcd for every pair is 1). We need to find minimum positive number x such that: x % num[0] = rem[0], x % num[1] = rem[1], .......................x % num[k-1] = rem[k-1] Basically, we are given k numbers which
7 min read
Implementation of Chinese Remainder theorem (Inverse Modulo based implementation)We are given two arrays num[0..k-1] and rem[0..k-1]. In num[0..k-1], every pair is coprime (gcd for every pair is 1). We need to find minimum positive number x such that: x % num[0] = rem[0], x % num[1] = rem[1], ....................... x % num[k-1] = rem[k-1] Example: Input: num[] = {3, 4, 5}, rem[
11 min read
Cyclic Redundancy Check and Modulo-2 DivisionCyclic Redundancy Check or CRC is a method of detecting accidental changes/errors in the communication channel. CRC uses Generator Polynomial which is available on both sender and receiver side. An example generator polynomial is of the form like x3 + x + 1. This generator polynomial represents key
15+ min read
Using Chinese Remainder Theorem to Combine Modular equationsGiven N modular equations: A ? x1mod(m1) . . A ? xnmod(mn) Find x in the equation A ? xmod(m1*m2*m3..*mn) where mi is prime, or a power of a prime, and i takes values from 1 to n. The input is given as two arrays, the first being an array containing values of each xi, and the second array containing
12 min read