How to Convert a TensorFlow Model to PyTorch?
Last Updated :
24 Apr, 2025
The landscape of deep learning is rapidly evolving. While TensorFlow and PyTorch stand as two of the most prominent frameworks, each boasts its unique advantages and ecosystems.
However, transitioning between these frameworks can be daunting, often requiring tedious reimplementation and adaptation of models. Fortunately, the Open Neural Network Exchange (ONNX) format emerges as a powerful intermediary, facilitating smooth conversions between TensorFlow and PyTorch models.
In this article, we will learn how can we use ONNX to convert TensorFlow model into a Pytorch model.
Why should you convert a TensorFlow model to PyTorch?
- Ecosystem Capability
If the project primarily uses PyTorch, converting TensorFlow models allows for seamless integration into your existing codebase without the need for additional TensorFlow dependencies. - Preferences for the Framework
One framework may be preferred over another by teams or individuals for reasons like functionality, community support, or ease of usage. By converting a model, practitioners can preserve the labor and expertise put into a TensorFlow model while taking advantage of PyTorch's capabilities. - Flexibility
PyTorch's dynamic computation graph allows for more flexibility during model construction and debugging compared to TensorFlow's static graph. This can make experimentation and model development more straightforward. - Performance Optimization
PyTorch provides a more intuitive interface for implementing custom layers and optimizations, potentially leading to improved performance or easier implementation of specific algorithms. - Community and Resources
The choice of framework depends on the project's need. PyTorch community offer more resources, libraries and support for the specific use case compared to TensorFlow. - Research and Development
In some research or development scenarios, certain algorithms or models may be more readily available or easier to implement in PyTorch, motivating the conversion from TensorFlow.
What is ONNX?
ONNX, or Open Neural Network Exchange, is an open-source format for representing deep learning models. It aims to enable interoperability between different deep learning frameworks by providing a common standard for model representation. Developed collaboratively by Microsoft and Facebook in 2017, ONNX allows models trained in one framework to be seamlessly transferred and deployed in another framework.
ONNX defines a common, efficient runtime inference format that can be used across platforms and devices. This reduces the overhead associated with model deployment and inference, making it easier to deploy deep learning models in production environments.
ONNX supports a wide range of neural network operators and layer types, and it can be extended to support custom operators and domain-specific operations. This flexibility enables ONNX to accommodate a broad range of model architectures and applications.
Step-by-Step Procedure of Converting TensorFlow Model to PyTorch Model
Setting Up the Environment
Let's make sure everything is configured properly in our environment before beginning the conversion procedure. Install the required packages by using:
!pip install tensorflow torch
Create a TensorFlow Model
Python3
import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OneHotEncoder
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
# Load the Iris dataset
iris = load_iris()
X = iris.data
y = iris.target.reshape(-1, 1) # Reshape to make it a column vector
# One-hot encode the target variable
encoder = OneHotEncoder(categories='auto')
y = encoder.fit_transform(y).toarray()
# Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Step 1: Define the model
model = Sequential([
Dense(10, activation='relu', input_shape=(X_train.shape[1],)),
Dense(8, activation='relu'),
Dense(3, activation='softmax')
])
model.summary()
Output:
Model: "sequential_3"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense_8 (Dense) (None, 10) 50
dense_9 (Dense) (None, 8) 88
dense_10 (Dense) (None, 3) 27
=================================================================
Total params: 165 (660.00 Byte)
Trainable params: 165 (660.00 Byte)
Non-trainable params: 0 (0.00 Byte)
Train and Save the Model
Python3
#Compile the model
model.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'])
#Train the model
model.fit(X_train, y_train, epochs=100, batch_size=4, verbose=1)
#Evaluate the model
loss, accuracy = model.evaluate(X_test, y_test)
print(f'Test Loss: {loss:.4f}')
print(f'Test Accuracy: {accuracy:.4f}')
#Save the model
model.save('iris_model.h5')
Output:
Epoch 1/100
30/30 [==============================] - 2s 2ms/step - loss: 1.1517 - accuracy: 0.3417
Epoch 2/100
30/30 [==============================] - 0s 2ms/step - loss: 1.0865 - accuracy: 0.4000
Epoch 3/100
30/30 [==============================] - 0s 2ms/step - loss: 1.0580 - accuracy: 0.4833
Epoch 4/100
30/30 [==============================] - 0s 2ms/step - loss: 1.0397 - accuracy: 0.4500
Epoch 5/100
30/30 [==============================] - 0s 2ms/step - loss: 1.0172 - accuracy: 0.3917
..
Test Loss: 0.0591
Test Accuracy: 1.0000
Load the trained TensorFlow model
Python3
loaded_model = tf.keras.models.load_model("iris_model.h5")
Converting to PyTorch Model
Installing the Required Libraries
In order to convert TensorFlow models to ONNX format, install the tf2onnx library:
!pip install tf2onnx
!pip install onnx2pytorch
Converting to tf2onnx Model
Python3
import tf2onnx
# Convert the model to ONNX format
onnx_model, _ = tf2onnx.convert.from_keras(loaded_model)
Converting to PyTorch Model
Python3
import onnx
from onnx2pytorch import ConvertModel
# Convert ONNX model to PyTorch
pytorch_model = ConvertModel(onnx_model)
pytorch_model
Output:
ConvertModel(
(MatMul_sequential_2/dense_5/BiasAdd:0): Linear(in_features=4, out_features=10, bias=True)
(Relu_sequential_2/dense_5/Relu:0): ReLU(inplace=True)
(MatMul_sequential_2/dense_6/BiasAdd:0): Linear(in_features=10, out_features=8, bias=True)
(Relu_sequential_2/dense_6/Relu:0): ReLU(inplace=True)
(MatMul_sequential_2/dense_7/BiasAdd:0): Linear(in_features=8, out_features=3, bias=True)
(Softmax_dense_7): Softmax(dim=-1)
)
Best Practices in Model Conversion
When converting models between deep learning frameworks like TensorFlow and PyTorch, adhering to best practices ensure smooth and accurate transitions. Here are some key best practices to follow:
- Before beginning the conversion process, thoroughly understand the architecture of the model you intend to convert. This includes the types of layers, activation functions, and any custom components.
- Make sure PyTorch and TensorFlow are both available in latest versions.
- Verify each framework's layer compatibility twice.
- To ensure accuracy, test the converted model thoroughly on a variety of inputs and edge cases to ensure its robustness and correctness. Consider using automated testing frameworks or validation pipelines to streamline this process.
Some of The Common Errors
- In case of shape discrepancies during the conversion process, verify the layer configurations and input shapes twice. Apply reshaping procedures or modify the layer's settings as necessary.
- There might not be exact counterparts for some operations in PyTorch. Determine these processes, then either create custom layers or look for other PyTorch routines.
- TensorFlow and PyTorch may use different tensor data formats (NHWC vs. NCHW). As necessary, change the data formats to avoid runtime issues.
Conclusion
To use PyTorch's dynamic computing graph and its ecosystem of libraries and tools, data scientists may find it helpful to convert their TensorFlow models to PyTorch models. The process of converting a Tensorflow model to a PyTorch model was covered in this blog post. These steps include exporting the Tensorflow model to a format that PyTorch can import, loading the exported model into PyTorch, converting the weights and structure of the model to PyTorch format, and saving the PyTorch model. Data scientists can quickly convert their Tensorflow models to PyTorch models and profit from PyTorch's features by following these steps.
Similar Reads
How To Convert Numpy Array To Tensor?
The tf.convert_to_tensor() method from the TensorFlow library is used to convert a NumPy array into a Tensor. The distinction between a NumPy array and a tensor is that tensors, unlike NumPy arrays, are supported by accelerator memory such as the GPU, they have a faster processing speed. there are a
2 min read
Convert PyTorch Tensor to Python List
PyTorch, a widely-used open-source machine learning library, is known for its flexibility and ease of use in building deep learning models. A fundamental component of PyTorch is the tensor, a multi-dimensional array that serves as the primary data structure for model training and inference. However,
3 min read
How to Get the Value of a Tensor in PyTorch
When working with PyTorch, a powerful and flexible deep learning framework, you often need to access and manipulate the values stored within tensors. Tensors are the core data structures in PyTorch, representing multi-dimensional arrays that can store various types of data, including scalars, vector
5 min read
Convert Pytorch model to tf-lite with onnx-tf
The increasing demand for deploying machine learning models on mobile and edge devices has led to the necessity of converting models into formats that are optimized for such environments. TensorFlow Lite (TFLite) is one such format that is widely used for deploying models on mobile devices. The diff
7 min read
How to access the metadata of a tensor in PyTorch?
In this article, we are going to see how to access the metadata of a tensor in PyTorch using Python. PyTorch in Python is a machine learning library. Also, it is free and open-source. It was firstly introduced by the Facebook AI research team. A tensor in PyTorch is similar to a NumPy array. But it
3 min read
Converting an image to a Torch Tensor in Python
In this article, we will see how to convert an image to a PyTorch Tensor. A tensor in PyTorch is like a NumPy array containing elements of the same dtypes. Â A tensor may be of scalar type, one-dimensional or multi-dimensional. To convert an image to a tensor in PyTorch we use PILToTensor() and ToTe
3 min read
How to convert an image to grayscale in PyTorch
In this article, we are going to see how to convert an image to grayscale in PyTorch. torchvision.transforms.grayscale method Grayscaling is the process of converting an image from other color spaces e.g. RGB, CMYK, HSV, etc. to shades of gray. It varies between complete black and complete white. to
2 min read
Converting a Pandas DataFrame to a PyTorch Tensor
PyTorch is a powerful deep learning framework widely used for building and training neural networks. One of the essential steps in using PyTorch is converting data from various formats into tensors, which are the fundamental data structures used by PyTorch. Pandas DataFrames are a common data struct
5 min read
Converting a List of Tensors to a Single Tensor in PyTorch
PyTorch, a popular deep learning framework, provides powerful tools for tensor manipulation. One common task in PyTorch is converting a list of tensors into a single tensor. This operation is crucial for various applications, including data preprocessing, model input preparation, and tensor operatio
4 min read
How to find the transpose of a tensor in PyTorch?
In this article, we are going to discuss how to find the transpose of the tensor in PyTorch. The transpose is obtained by changing the rows to columns and columns to rows. we can transpose a tensor by using transpose() method. the below syntax is used to find the transpose of the tensor. Syntax: tor
2 min read