We have discussed Huffman Encoding in a previous post. In this post, decoding is discussed.
Examples:
Input Data: AAAAAABCCCCCCDDEEEEE
Frequencies: A: 6, B: 1, C: 6, D: 2, E: 5
Encoded Data: 0000000000001100101010101011111111010101010
Huffman Tree: '#' is the special character usedfor internal nodes as character field
is not needed for internal nodes.
#(20)
/ \
#(12) #(8)
/ \ / \
A(6) C(6) E(5) #(3)
/ \
B(1) D(2)
Code of 'A' is '00', code of 'C' is '01', ..
Decoded Data: AAAAAABCCCCCCDDEEEEE
Input Data: GeeksforGeeks
Character With there Frequencies
e 10, f 1100, g 011, k 00, o 010, r 1101, s 111
Encoded Huffman data: 01110100011111000101101011101000111
Decoded Huffman Data: geeksforgeeks
Follow the below steps to solve the problem:
Note: To decode the encoded data we require the Huffman tree. We iterate through the binary encoded data. To find character corresponding to current bits, we use the following simple steps:
- We start from the root and do the following until a leaf is found.
- If the current bit is 0, we move to the left node of the tree.
- If the bit is 1, we move to right node of the tree.
- If during the traversal, we encounter a leaf node, we print the character of that particular leaf node and then again continue the iteration of the encoded data starting from step 1.
The below code takes a string as input, encodes it, and saves it in a variable encoded string. Then it decodes it and prints the original string.
Below is the implementation of the above approach:
CPP
// C++ program to encode and decode a string using
// Huffman Coding.
#include <bits/stdc++.h>
#define MAX_TREE_HT 256
using namespace std;
// to map each character its huffman value
map<char, string> codes;
// To store the frequency of character of the input data
map<char, int> freq;
// A Huffman tree node
struct MinHeapNode {
char data; // One of the input characters
int freq; // Frequency of the character
MinHeapNode *left, *right; // Left and right child
MinHeapNode(char data, int freq)
{
left = right = NULL;
this->data = data;
this->freq = freq;
}
};
// utility function for the priority queue
struct compare {
bool operator()(MinHeapNode* l, MinHeapNode* r)
{
return (l->freq > r->freq);
}
};
// utility function to print characters along with
// there huffman value
void printCodes(struct MinHeapNode* root, string str)
{
if (!root)
return;
if (root->data != '$')
cout << root->data << ": " << str << "\n";
printCodes(root->left, str + "0");
printCodes(root->right, str + "1");
}
// utility function to store characters along with
// there huffman value in a hash table, here we
// have C++ STL map
void storeCodes(struct MinHeapNode* root, string str)
{
if (root == NULL)
return;
if (root->data != '$')
codes[root->data] = str;
storeCodes(root->left, str + "0");
storeCodes(root->right, str + "1");
}
// STL priority queue to store heap tree, with respect
// to their heap root node value
priority_queue<MinHeapNode*, vector<MinHeapNode*>, compare>
minHeap;
// function to build the Huffman tree and store it
// in minHeap
void HuffmanCodes(int size)
{
struct MinHeapNode *left, *right, *top;
for (map<char, int>::iterator v = freq.begin();
v != freq.end(); v++)
minHeap.push(new MinHeapNode(v->first, v->second));
while (minHeap.size() != 1) {
left = minHeap.top();
minHeap.pop();
right = minHeap.top();
minHeap.pop();
top = new MinHeapNode('$',
left->freq + right->freq);
top->left = left;
top->right = right;
minHeap.push(top);
}
storeCodes(minHeap.top(), "");
}
// utility function to store map each character with its
// frequency in input string
void calcFreq(string str, int n)
{
for (int i = 0; i < str.size(); i++)
freq[str[i]]++;
}
// function iterates through the encoded string s
// if s[i]=='1' then move to node->right
// if s[i]=='0' then move to node->left
// if leaf node append the node->data to our output string
string decode_file(struct MinHeapNode* root, string s)
{
string ans = "";
struct MinHeapNode* curr = root;
for (int i = 0; i < s.size(); i++) {
if (s[i] == '0')
curr = curr->left;
else
curr = curr->right;
// reached leaf node
if (curr->left == NULL and curr->right == NULL) {
ans += curr->data;
curr = root;
}
}
// cout<<ans<<endl;
return ans + '\0';
}
// Driver code
int main()
{
string str = "geeksforgeeks";
string encodedString, decodedString;
calcFreq(str, str.length());
HuffmanCodes(str.length());
cout << "Character With there Frequencies:\n";
for (auto v = codes.begin(); v != codes.end(); v++)
cout << v->first << ' ' << v->second << endl;
for (auto i : str)
encodedString += codes[i];
cout << "\nEncoded Huffman data:\n"
<< encodedString << endl;
// Function call
decodedString
= decode_file(minHeap.top(), encodedString);
cout << "\nDecoded Huffman Data:\n"
<< decodedString << endl;
return 0;
}
Java
// Java program to encode and decode a string using
// Huffman Coding.
import java.util.*;
import java.util.Map.Entry;
public class HuffmanCoding {
private static Map<Character, String> codes = new HashMap<>();
private static Map<Character, Integer> freq = new HashMap<>();
private static PriorityQueue<MinHeapNode> minHeap = new PriorityQueue<>();
public static void main(String[] args) {
String str = "geeksforgeeks";
String encodedString = "";
String decodedString = "";
calcFreq(str);
HuffmanCodes(str.length());
System.out.println("Character With their Frequencies:");
for (Entry<Character, String> entry : codes.entrySet()) {
System.out.println(entry.getKey() + " " + entry.getValue());
}
for (char c : str.toCharArray()) {
encodedString += codes.get(c);
}
System.out.println("\nEncoded Huffman data:");
System.out.println(encodedString);
decodedString = decodeFile(minHeap.peek(), encodedString);
System.out.println("\nDecoded Huffman Data:");
System.out.println(decodedString);
}
private static void HuffmanCodes(int size) {
for (Entry<Character, Integer> entry : freq.entrySet()) {
minHeap.add(new MinHeapNode(entry.getKey(), entry.getValue()));
}
while (minHeap.size() != 1) {
MinHeapNode left = minHeap.poll();
MinHeapNode right = minHeap.poll();
MinHeapNode top = new MinHeapNode('$', left.freq + right.freq);
top.left = left;
top.right = right;
minHeap.add(top);
}
storeCodes(minHeap.peek(), "");
}
private static void calcFreq(String str) {
for (char c : str.toCharArray()) {
freq.put(c, freq.getOrDefault(c, 0) + 1);
}
}
private static void storeCodes(MinHeapNode root, String str) {
if (root == null) {
return;
}
if (root.data != '$') {
codes.put(root.data, str);
}
storeCodes(root.left, str + "0");
storeCodes(root.right, str + "1");
}
private static String decodeFile(MinHeapNode root, String s) {
String ans = "";
MinHeapNode curr = root;
int n = s.length();
for (int i = 0; i < n; i++) {
if (s.charAt(i) == '0') {
curr = curr.left;
} else {
curr = curr.right;
}
if (curr.left == null && curr.right == null) {
ans += curr.data;
curr = root;
}
}
return ans + '\0';
}
}
class MinHeapNode implements Comparable<MinHeapNode> {
char data;
int freq;
MinHeapNode left, right;
MinHeapNode(char data, int freq) {
this.data = data;
this.freq = freq;
}
public int compareTo(MinHeapNode other) {
return this.freq - other.freq;
}
}
//This code is contributed by NarasingaNikhil
Python3
import heapq
from collections import defaultdict
# to map each character its huffman value
codes = {}
# To store the frequency of character of the input data
freq = defaultdict(int)
# A Huffman tree node
class MinHeapNode:
def __init__(self, data, freq):
self.left = None
self.right = None
self.data = data
self.freq = freq
def __lt__(self, other):
return self.freq < other.freq
# utility function to print characters along with
# there huffman value
def printCodes(root, str):
if root is None:
return
if root.data != '$':
print(root.data, ":", str)
printCodes(root.left, str + "0")
printCodes(root.right, str + "1")
# utility function to store characters along with
# there huffman value in a hash table
def storeCodes(root, str):
if root is None:
return
if root.data != '$':
codes[root.data] = str
storeCodes(root.left, str + "0")
storeCodes(root.right, str + "1")
# function to build the Huffman tree and store it
# in minHeap
def HuffmanCodes(size):
global minHeap
for key in freq:
minHeap.append(MinHeapNode(key, freq[key]))
heapq.heapify(minHeap)
while len(minHeap) != 1:
left = heapq.heappop(minHeap)
right = heapq.heappop(minHeap)
top = MinHeapNode('$', left.freq + right.freq)
top.left = left
top.right = right
heapq.heappush(minHeap, top)
storeCodes(minHeap[0], "")
# utility function to store map each character with its
# frequency in input string
def calcFreq(str, n):
for i in range(n):
freq[str[i]] += 1
# function iterates through the encoded string s
# if s[i]=='1' then move to node->right
# if s[i]=='0' then move to node->left
# if leaf node append the node->data to our output string
def decode_file(root, s):
ans = ""
curr = root
n = len(s)
for i in range(n):
if s[i] == '0':
curr = curr.left
else:
curr = curr.right
# reached leaf node
if curr.left is None and curr.right is None:
ans += curr.data
curr = root
return ans + '\0'
# Driver code
if __name__ == "__main__":
minHeap = []
str = "geeksforgeeks"
encodedString, decodedString = "", ""
calcFreq(str, len(str))
HuffmanCodes(len(str))
print("Character With there Frequencies:")
for key in sorted(codes):
print(key, codes[key])
for i in str:
encodedString += codes[i]
print("\nEncoded Huffman data:")
print(encodedString)
# Function call
decodedString = decode_file(minHeap[0], encodedString)
print("\nDecoded Huffman Data:")
print(decodedString)
JavaScript
// To map each character its huffman value
let codes = {};
// To store the frequency of character of the input data
let freq = {};
// A Huffman tree node
class MinHeapNode {
constructor(data, freq) {
this.left = null;
this.right = null;
this.data = data;
this.freq = freq;
}
// Define the comparison method for sorting the nodes in the heap
compareTo(other) {
return this.freq - other.freq;
}
}
// Create an empty min-heap
let minHeap = [];
// Utility function to print characters along with their huffman value
function printCodes(root, str) {
if (!root) {
return;
}
if (root.data !== "$") {
console.log(root.data + " : " + str);
}
printCodes(root.left, str + "0");
printCodes(root.right, str + "1");
}
// Utility function to store characters along with their huffman value in a hash table
function storeCodes(root, str) {
if (!root) {
return;
}
if (root.data !== "$") {
codes[root.data] = str;
}
storeCodes(root.left, str + "0");
storeCodes(root.right, str + "1");
}
// Function to build the Huffman tree and store it in minHeap
function HuffmanCodes(size) {
for (let key in freq) {
minHeap.push(new MinHeapNode(key, freq[key]));
}
// Convert the array to a min-heap using the built-in sort method
minHeap.sort((a, b) => a.compareTo(b));
while (minHeap.length !== 1) {
let left = minHeap.shift();
let right = minHeap.shift();
let top = new MinHeapNode("$", left.freq + right.freq);
top.left = left;
top.right = right;
minHeap.push(top);
// Sort the array to maintain the min-heap property
minHeap.sort((a, b) => a.compareTo(b));
}
storeCodes(minHeap[0], "");
}
// Utility function to store map each character with its frequency in input string
function calcFreq(str) {
for (let i = 0; i < str.length; i++) {
let char = str.charAt(i);
if (freq[char]) {
freq[char]++;
} else {
freq[char] = 1;
}
}
}
// Function iterates through the encoded string s
// If s[i] == '1' then move to node.right
// If s[i] == '0' then move to node.left
// If leaf node, append the node.data to our output string
function decode_file(root, s) {
let ans = "";
let curr = root;
let n = s.length;
for (let i = 0; i < n; i++) {
if (s.charAt(i) == "0") {
curr = curr.left;
} else {
curr = curr.right;
}
// Reached leaf node
if (!curr.left && !curr.right) {
ans += curr.data;
curr = root;
}
}
return ans + "\0";
}
// Driver code
let str = "geeksforgeeks";
let encodedString = "";
let decodedString = "";
calcFreq(str);
HuffmanCodes(str.length);
console.log("Character With their Frequencies:")
let keys = Array.from(Object.keys(codes))
keys.sort()
for (var key of keys)
console.log(key, codes[key])
for (var i of str)
encodedString += codes[i]
console.log("\nEncoded Huffman data:")
console.log(encodedString)
// Function call
decodedString = decode_file(minHeap[0], encodedString)
console.log("\nDecoded Huffman Data:")
console.log(decodedString)
C#
using System;
using System.Collections.Generic;
using System.Linq;
namespace HuffmanEncoding
{
// To store the frequency of character of the input data
class FrequencyTable
{
private readonly Dictionary<char, int> _freq = new Dictionary<char, int>();
public void Add(char c)
{
if (_freq.ContainsKey(c))
{
_freq[c]++;
}
else
{
_freq[c] = 1;
}
}
public Dictionary<char, int> ToDictionary()
{
return _freq;
}
}
// A Huffman tree node
class HuffmanNode : IComparable<HuffmanNode>
{
public HuffmanNode Left { get; set; }
public HuffmanNode Right { get; set; }
public char Data { get; set; }
public int Frequency { get; set; }
public HuffmanNode(char data, int freq)
{
Data = data;
Frequency = freq;
}
// Define the comparison method for sorting the nodes in the heap
public int CompareTo(HuffmanNode other)
{
return Frequency - other.Frequency;
}
}
// Utility class for creating Huffman codes
class HuffmanEncoder
{
// To map each character its Huffman value
private readonly Dictionary<char, string> _codes = new Dictionary<char, string>();
// Create an empty min-heap
private readonly List<HuffmanNode> _minHeap = new List<HuffmanNode>();
// Function to build the Huffman tree and store it in minHeap
private void BuildHuffmanTree(Dictionary<char, int> freq)
{
foreach (var kvp in freq)
{
_minHeap.Add(new HuffmanNode(kvp.Key, kvp.Value));
}
// Convert the list to a min-heap using the built-in sort method
_minHeap.Sort();
while (_minHeap.Count > 1)
{
var left = _minHeap.First();
_minHeap.RemoveAt(0);
var right = _minHeap.First();
_minHeap.RemoveAt(0);
var top = new HuffmanNode('$', left.Frequency + right.Frequency);
top.Left = left;
top.Right = right;
_minHeap.Add(top);
// Sort the list to maintain the min-heap property
_minHeap.Sort();
}
}
// Utility function to store characters along with their Huffman value in a hash table
private void StoreCodes(HuffmanNode root, string str)
{
if (root == null)
{
return;
}
if (root.Data != '$')
{
_codes[root.Data] = str;
}
StoreCodes(root.Left, str + "0");
StoreCodes(root.Right, str + "1");
}
// Utility function to print characters along with their Huffman value
public void PrintCodes(HuffmanNode root, string str)
{
if (root == null)
{
return;
}
if (root.Data != '$')
{
Console.WriteLine(root.Data + " : " + str);
}
PrintCodes(root.Left, str + "0");
PrintCodes(root.Right, str + "1");
}
// Function iterates through the encoded string s
// If s[i] == '1' then move to node.right
// If s[i] == '0' then move to node.left
// If leaf node, append the node.data to our output string
public string DecodeFile(HuffmanNode root, string s)
{
string ans = "";
HuffmanNode curr = root;
int n = s.Length;
for (int i = 0; i < n; i++)
{
if (s[i] == '0')
{
curr = curr.Left;
}
else
{
curr = curr.Right;
}
// Reached leaf node
if (curr.Left == null && curr.Right == null)
{
ans += curr.Data;
curr = root;
}
}
return ans + "\0";
}
// Function to build the Huffman tree and store it in minHeap
public void BuildCodes(Dictionary<char, int> freq)
{
BuildHuffmanTree(freq);
StoreCodes(_minHeap.First(), "");
}
public Dictionary<char, string> GetCodes()
{
return _codes;
}
public HuffmanNode GetRoot()
{
return _minHeap.First();
}
}
class Program
{
static void Main(string[] args)
{
// Driver code
string str = "geeksforgeeks";
string encodedString = "";
string decodedString;
var freqTable = new FrequencyTable();
foreach (char c in str)
{
freqTable.Add(c);
}
var huffmanEncoder = new HuffmanEncoder();
huffmanEncoder.BuildCodes(freqTable.ToDictionary());
Console.WriteLine("Character With their Frequencies:");
foreach (var kvp in huffmanEncoder.GetCodes())
{
Console.WriteLine($"{kvp.Key} : {kvp.Value}");
}
foreach (char c in str)
{
encodedString += huffmanEncoder.GetCodes()[c];
}
Console.WriteLine("\nEncoded Huffman data:");
Console.WriteLine(encodedString);
// Function call
decodedString = huffmanEncoder.DecodeFile(huffmanEncoder.GetRoot(), encodedString);
Console.WriteLine("\nDecoded Huffman Data:");
Console.WriteLine(decodedString);
}
}
}
OutputCharacter With there Frequencies:
e 10
f 1100
g 011
k 00
o 010
r 1101
s 111
Encoded Huffman data:
01110100011111000101101011101000111
Decoded Huffman Data:
geeksforgeeks
Time complexity:
Time complexity of the Huffman coding algorithm is O(n log n), where n is the number of characters in the input string. The auxiliary space complexity is also O(n), where n is the number of characters in the input string.
In the given C++ implementation, the time complexity is dominated by the creation of the Huffman tree using the priority queue, which takes O(n log n) time. The space complexity is dominated by the maps used to store the frequency and codes of characters, which take O(n) space. The recursive functions used to print codes and store codes also contribute to the space complexity.
Comparing Input file size and Output file size:
Comparing the input file size and the Huffman encoded output file. We can calculate the size of the output data in a simple way. Let's say our input is a string "geeksforgeeks" and is stored in a file input.txt.
Input File Size:
Input: "geeksforgeeks"
Total number of character i.e. input length: 13
Size: 13 character occurrences * 8 bits = 104 bits or 13 bytes.
Output File Size:
Input: "geeksforgeeks"
------------------------------------------------
Character | Frequency | Binary Huffman Value |
------------------------------------------------
e | 4 | 10 |
f | 1 | 1100 |
g | 2 | 011 |
k | 2 | 00 |
o | 1 | 010 |
r | 1 | 1101 |
s | 2 | 111 |
------------------------------------------------
So to calculate output size:
e: 4 occurrences * 2 bits = 8 bits
f: 1 occurrence * 4 bits = 4 bits
g: 2 occurrences * 3 bits = 6 bits
k: 2 occurrences * 2 bits = 4 bits
o: 1 occurrence * 3 bits = 3 bits
r: 1 occurrence * 4 bits = 4 bits
s: 2 occurrences * 3 bits = 6 bits
Total Sum: 35 bits approx 5 bytes
Hence, we could see that after encoding the data we saved a large amount of data. The above method can also help us to determine the value of N i.e. the length of the encoded data.
Similar Reads
Huffman Coding | Greedy Algo-3
Huffman coding is a lossless data compression algorithm. The idea is to assign variable-length codes to input characters, lengths of the assigned codes are based on the frequencies of corresponding characters. The variable-length codes assigned to input characters are Prefix Codes, means the codes (
12 min read
Huffman Coding using Priority Queue
Prerequisite: Greedy Algorithms | Set 3 (Huffman Coding), priority_queue::push() and priority_queue::pop() in C++ STL Given a char array ch[] and frequency of each character as freq[]. The task is to find Huffman Codes for every character in ch[] using Priority Queue. Example Input: ch[] = { 'a', 'b
12 min read
Canonical Huffman Coding
Huffman Coding is a lossless data compression algorithm where each character in the data is assigned a variable length prefix code. The least frequent character gets the largest code and the most frequent one gets the smallest code. Encoding the data using this technique is very easy and efficient.
11 min read
Huffman Decoding
We have discussed Huffman Encoding in a previous post. In this post, decoding is discussed. Examples: Input Data: AAAAAABCCCCCCDDEEEEEFrequencies: A: 6, B: 1, C: 6, D: 2, E: 5 Encoded Data: 0000000000001100101010101011111111010101010 Huffman Tree: '#' is the special character usedfor internal nodes
15 min read
Efficient Huffman Coding for Sorted Input | Greedy Algo-4
We recommend to read following post as a prerequisite for this.Greedy Algorithms | Set 3 (Huffman Coding) Time complexity of the algorithm discussed in above post is O(nLogn). If we know that the given array is sorted (by non-decreasing order of frequency), we can generate Huffman codes in O(n) time
15+ min read
Text File Compression And Decompression Using Huffman Coding
Text files can be compressed to make them smaller and faster to send, and unzipping files on devices has a low overhead. The process of encoding involves changing the representation of a file so that the (binary) compressed output takes less space to store and takes less time to transmit while retai
14 min read
Image Compression using Huffman Coding
Huffman coding is one of the basic compression methods, that have proven useful in image and video compression standards. When applying Huffman encoding technique on an Image, the source symbols can be either pixel intensities of the Image, or the output of an intensity mapping function. Prerequisit
15+ min read
Adaptive Huffman Coding And Decoding
Prerequisite: Huffman Coding, Huffman Decoding Adaptive Huffman Coding is also known as Dynamic Huffman Coding. The implementation is done using Vitter Algorithm. Encoding Adaptive Huffman coding for a string containing alphabets: Let m be the total number of alphabets. So m = 26. For Vitter Algorit
7 min read