Open In App

Hungarian Algorithm for Assignment Problem (Introduction and Implementation)

Last Updated : 26 Apr, 2025
Comments
Improve
Suggest changes
Like Article
Like
Report

You are the head of a company with n agents and n tasks. Every agent incurs a different cost to complete each task, as given by the cost[][] matrix, where cost[i][j] represents the cost for the ith agent to perform the jth task. Your objective is to assign exactly one agent to each task—and one task to each agent—in such a way that the total cost of all assignments is minimized.

Example:

Input: n = 3
cost[][] = [ [2500, 4000, 3500],
[4000, 6000, 3500],
[2000, 4000, 2500] ]
Output: 9500
Explanation: The optimal assignment is to assign job 2 to the 1st worker, job 3 to the 2nd worker and job 1 to the 3rd worker.
Hence, the optimal cost is 4000 + 3500 + 2000 = 9500.

This example can also be understood in the following way:
You work as a manager for a chip manufacturer, and you currently have 3 people on the road meeting clients. Your salespeople are in Jaipur, Pune and Bangalore, and you want them to fly to three other cities: Delhi, Mumbai and Kerala. The table below shows the cost of airline tickets in INR between the cities: hungarian1 The question: where would you send each of your salespeople in order to minimize fair? Possible assignment: Cost = 11000 INR hungerain2 Other Possible assignment: Cost = 9500 INR and this is the best of the 3! possible assignments. hungarian4

Approach:

The Hungarian algorithm (also known as the Munkres assignment algorithm) is designed to find an optimal assignment between n agents and n tasks with a worst-case time complexity of O(n³). Its key insight is that if you add or subtract a constant from all elements in any row or column of the cost matrix, the set of optimal assignments does not change. By leveraging this property, the algorithm reduces the original cost matrix to one containing zeros, thereby simplifying the assignment process to one where each agent can be assigned a task at zero penalty.

Follow the below given step-by-step approach:

  1. Row Reduction: For each row in the matrix, identify the smallest element and subtract it from every element in that row.
  2. Column Reduction: For each column in the matrix, identify the smallest element and subtract it from every element in that column.
  3. Zero Coverage: Cover all zeros in the resulting matrix using the minimum number of horizontal and vertical lines.
  4. Optimality Check:
    • If the number of covering lines equals n, then an optimal assignment is possible, and the algorithm terminates.
    • If the number of covering lines is less than n, proceed to the next step.
  5. Adjust the Matrix:
    • Determine the smallest entry that is not covered by any line.
    • Subtract this entry from every uncovered row.
    • Add the same entry to every column that is covered by a line.
    • Return to step 3 with the modified matrix.
  6. This process is repeated until an optimal assignment is identified.

Consider few examples to understand the approach:

Let the 2D array be:
cost[][] = [ [2500, 4000, 3500],
[4000, 6000, 3500],
[2000, 4000, 2500] ]

Step 1: Subtract minimum of every row. Thus, 2500, 3500 and 2000 are subtracted from rows 1, 2 and 3 respectively.

cost[][] = [ [0, 1500, 1000],
[500, 2500, 0],
[0, 2000, 500] ]

Step 2: Subtract minimum of every column. Thus 0, 1500 and 0 are subtracted from columns 1, 2 and 3 respectively.

cost[][] = [ [0, 0, 1000],
[500, 1000, 0],
[0, 500, 500] ]

Step 3: Cover all zeroes with minimum number of horizontal and vertical lines.

Step 4: Since we need 3 lines to cover all zeroes, the optimal assignment is found. 

cost[][] = [ [2500, 4000, 3500],
[4000, 6000, 3500],
[2000, 4000, 2500] ]

So the optimal cost is 4000 + 3500 + 2000 = 9500

In the above example, the first check for optimality did give us solution, but what if we the number covering lines is less than n. The below given example consider this case:

Let the 2D array be:
cost[][] = [ [1500, 4000, 4500],
[2000, 6000, 3500],
[2000, 4000, 2500] ]

Step 1: Subtract minimum of every row. Thus, 1500, 2000 and 2000 are subtracted from rows 1, 2 and 3 respectively.

cost[][] = [ [0, 2500, 3000],
[0, 4000, 1500],
[0, 2000, 500] ]

Step 2: Subtract minimum of every column. Thus 0, 2000 and 500 are subtracted from columns 1, 2 and 3 respectively.

cost[][] = [ [0, 500, 2500],
[0, 2000, 1000],
[0, 0, 0] ]

Step 3: Cover all zeroes with minimum number of horizontal and vertical lines.

Step 4: Since we need only 2 lines to cover all zeroes, the optimal assignment is not found. 

Step 5: We subtract the smallest uncovered entry from all uncovered rows. Smallest entry is 500.

cost[][] = [ [-500, 0, 2000],
[-500, 1500, 500],
[0, 0, 0] ]

Step 6: Then we add the smallest entry to all covered columns, we get

cost[][] = [ [0, 0, 2000],
[0, 1500, 500],
[500, 0, 0] ]

Now we return to Step 3: Here we cover again using lines. and go to Step 4. Since we need 3 lines to cover, we found the optimal solution.

cost[][] = [ [1500, 4000, 4500],
[2000, 6000, 3500],
[2000, 4000, 2500] ]

So the optimal cost is 4000 + 2000 + 2500 = 8500

Below is given the implementation:

C++
#include <bits/stdc++.h>
using namespace std;

void labelIt(vector<vector<int>> &cost, vector<int> &lx) {
    int n = cost.size();
    for(int i = 0; i < n; i++)
        for(int j = 0; j < n; j++)
            lx[i] = max(lx[i], cost[i][j]);
}

void addTree(int x, int prevX, vector<bool> &inTreeX, 
    vector<int> &prev, vector<int> &slack, vector<int> &slackX,
     vector<int> &lx, vector<int> &ly, vector<vector<int>> &cost) {
    inTreeX[x] = true;
    prev[x] = prevX;
    for(int y = 0; y < slack.size(); y++) {
        if (lx[x] + ly[y] - cost[x][y] < slack[y]) {
            slack[y] = lx[x] + ly[y] - cost[x][y];
            slackX[y] = x;
        }
    }
}

void updateLabels(vector<bool> &inTreeX, vector<bool> &inTreeY,
     vector<int> &slack, vector<int> &lx, vector<int> &ly) {
    int n = slack.size();

    int delta = INT_MAX;

    for(int y = 0; y < n; y++)
        if(!inTreeY[y])
            delta = min(delta, slack[y]);

    for(int x = 0; x < n; x++)
        if(inTreeX[x])
            lx[x] -= delta;

    for(int y = 0; y < n; y++)
        if(inTreeY[y])
            ly[y] += delta;

    for(int y = 0; y < n; y++)
        if(!inTreeY[y])
            slack[y] -= delta;

}

void augment(vector<vector<int>> &cost, int &match, vector<bool> &inTreeX, 
    vector<bool> &inTreeY, vector<int> &prev, vector<int> &xy, vector<int> &yx, 
    vector<int> &slack, vector<int> &slackX, vector<int> &lx, vector<int> &ly) {

    // augmenting path algorithm
    int n = cost.size();

    // check if we have found a perfect matching
    if(match == n)
        return;

    int x, y, root;

    queue<int> q;

    // find root of tree
    for(int i = 0; i < n; i++) {

        if(xy[i] == -1) {
            q.push(root = i);
            prev[i] = -2;
            inTreeX[i] = true;
            break;
        }
    }

    // initialize slack
    for(int i = 0; i < n; i++) {
        slack[i] = lx[root] + ly[i] - cost[root][i];
        slackX[i] = root;
    }

    // BFS to find augmenting path
    while(true) {

        // building tree with BFS cycle
        while(!q.empty()) {

            // current vertex
            x = q.front();
            q.pop();

            //iterate through all edges in equality graph
            for(y = 0; y < n; y++) {
                if(lx[x] + ly[y] - cost[x][y] == 0 && !inTreeY[y]) {

                    // if y is an exposed vertex in Y
                    // found, so augmenting path exists
                    if(yx[y] == -1) {
                        x = slackX[y];
                        break;
                    } 
                    
                    // else just add y to inTreeY
                    else {
                        inTreeY[y] = true;

                        // add vertex yx[y], which is 
                        // matched with y, to the queue
                        q.push(yx[y]);

                        // add edges (x, y) and (y, yx[y]) to the tree
                        addTree(yx[y], x, inTreeX, prev, 
                            slack, slackX, lx, ly, cost);
                    }
                }
            }

            // augmenting path found
            if(y < n)
                break;
        }

        // augmenting path found
        if(y < n)
            break; 

        // else improve labeling
        updateLabels(inTreeX, inTreeY, slack, lx, ly);

        for(y = 0; y < n; y++) {

            if(!inTreeY[y] && slack[y] == 0) {

                // if y is an exposed vertex in Y
                // found, so augmenting path exists
                if(yx[y] == -1) {
                    x = slackX[y];
                    break;
                } 
                
                // else just add y to inTreeY
                else {
                    inTreeY[y] = true;

                    // add vertex yx[y], which is matched with y, to the queue
                    if(!inTreeX[yx[y]]) {
                        q.push(yx[y]);

                        // add edges (x, y) and (y, yx[y]) to the tree
                        addTree(yx[y], slackX[y], inTreeX, prev, 
                            slack, slackX, lx, ly, cost);
                    }
                }
            }
        }

        // augmenting path found
        if(y < n)
            break;
    }

    if(y < n) {

        // augmenting path found
        match++;

        // update xy and yx
        for(int cx = x, cy = y, ty; 
            cx != -2; cx = prev[cx], cy = ty) {
            ty = xy[cx];
            xy[cx] = cy;
            yx[cy] = cx;
        }

        // reset inTreeX and inTreeY
        fill(inTreeX.begin(), inTreeX.end(), false);
        fill(inTreeY.begin(), inTreeY.end(), false);

        // recall function, go to step 1 of the algorithm
        augment(cost, match, inTreeX, inTreeY, 
            prev, xy, yx, slack, slackX, lx, ly);
    }
}

int findMinCost(vector<vector<int>> &cost) {
    int n = cost.size();

    // convert cost matrix to profit matrix
    // by multiplying each element by -1
    for(int i = 0; i < n; i++)
        for(int j = 0; j < n; j++)
            cost[i][j] = -1 * cost[i][j]; 

    // to store the results
    int result = 0;

    // number of vertices in current matching
    int match = 0;

    vector<int> xy(n, -1), yx(n, -1), lx(n, 0);
    vector<int> ly(n, 0), slack(n), slackX(n), prev(n);

    vector<bool> inTreeX(n, false), inTreeY(n, false);

    labelIt(cost, lx);

    augment(cost, match, inTreeX, inTreeY, prev, 
        xy, yx, slack, slackX, lx, ly);

    for(int i = 0; i < n; i++) {
        result += cost[i][xy[i]];
    }
    return -1 * result;
}

int main() {
    vector<vector<int>> cost = {
        {2500, 4000, 3500},
        {4000, 6000, 3500},
        {2000, 4000, 2500}
    };
    cout << findMinCost(cost);
    return 0;
}
Java
import java.util.*;
 
public class GfG {
 
    public static void labelIt(int[][] cost, int[] lx) {
        int n = cost.length;
        for(int i = 0; i < n; i++)
            for(int j = 0; j < n; j++)
                lx[i] = Math.max(lx[i], cost[i][j]);
    }
 
    public static void addTree(int x, int prevX, boolean[] inTreeX, 
        int[] prev, int[] slack, int[] slackX,
         int[] lx, int[] ly, int[][] cost) {
        inTreeX[x] = true;
        prev[x] = prevX;
        for(int y = 0; y < slack.length; y++) {
            if (lx[x] + ly[y] - cost[x][y] < slack[y]) {
                slack[y] = lx[x] + ly[y] - cost[x][y];
                slackX[y] = x;
            }
        }
    }
 
    public static void updateLabels(boolean[] inTreeX, boolean[] inTreeY,
         int[] slack, int[] lx, int[] ly) {
        int n = slack.length;
 
        int delta = Integer.MAX_VALUE;
 
        for(int y = 0; y < n; y++)
            if(!inTreeY[y])
                delta = Math.min(delta, slack[y]);
 
        for(int x = 0; x < n; x++)
            if(inTreeX[x])
                lx[x] -= delta;
 
        for(int y = 0; y < n; y++)
            if(inTreeY[y])
                ly[y] += delta;
 
        for(int y = 0; y < n; y++)
            if(!inTreeY[y])
                slack[y] -= delta;
 
    }
 
    public static void augment(int[][] cost, int[] match, boolean[] inTreeX, 
        boolean[] inTreeY, int[] prev, int[] xy, int[] yx, 
        int[] slack, int[] slackX, int[] lx, int[] ly) {
 
        // augmenting path algorithm
        int n = cost.length;
 
        // check if we have found a perfect matching
        if(match[0] == n)
            return;
 
        int x = 0, y = 0, root = 0;
 
        Queue<Integer> q = new LinkedList<>();
 
        // find root of tree
        for(int i = 0; i < n; i++) {
 
            if(xy[i] == -1) {
                q.add(root = i);
                prev[i] = -2;
                inTreeX[i] = true;
                break;
            }
        }
 
        // initialize slack
        for(int i = 0; i < n; i++) {
            slack[i] = lx[root] + ly[i] - cost[root][i];
            slackX[i] = root;
        }
 
        // BFS to find augmenting path
        while(true) {
 
            // building tree with BFS cycle
            while(!q.isEmpty()) {
 
                // current vertex
                x = q.poll();
 
                //iterate through all edges in equality graph
                for(y = 0; y < n; y++) {
                    if(lx[x] + ly[y] - cost[x][y] == 0 && !inTreeY[y]) {
 
                        // if y is an exposed vertex in Y
                        // found, so augmenting path exists
                        if(yx[y] == -1) {
                            x = slackX[y];
                            break;
                        } 
                        
                        // else just add y to inTreeY
                        else {
                            inTreeY[y] = true;
 
                            // add vertex yx[y], which is 
                            // matched with y, to the queue
                            q.add(yx[y]);
 
                            // add edges (x, y) and (y, yx[y]) to the tree
                            addTree(yx[y], x, inTreeX, prev, 
                            slack, slackX, lx, ly, cost);
                        }
                    }
                }
 
                // augmenting path found
                if(y < n)
                    break;
            }
 
            // augmenting path found
            if(y < n)
                break; 
 
            // else improve labeling
            updateLabels(inTreeX, inTreeY, slack, lx, ly);
 
            for(y = 0; y < n; y++) {
 
                if(!inTreeY[y] && slack[y] == 0) {
 
                    // if y is an exposed vertex in Y
                    // found, so augmenting path exists
                    if(yx[y] == -1) {
                        x = slackX[y];
                        break;
                    } 
                    
                    // else just add y to inTreeY
                    else {
                        inTreeY[y] = true;
 
                        // add vertex yx[y], which is matched with y, to the queue
                        if(!inTreeX[yx[y]]) {
                            q.add(yx[y]);
 
                            // add edges (x, y) and (y, yx[y]) to the tree
                            addTree(yx[y], slackX[y], inTreeX, prev, 
                            slack, slackX, lx, ly, cost);
                        }
                    }
                }
            }
 
            // augmenting path found
            if(y < n)
                break;
        }
 
        if(y < n) {
 
            // augmenting path found
            match[0]++;
 
            // update xy and yx
            for(int cx = x, cy = y, ty; 
                cx != -2; cx = prev[cx], cy = ty) {
                ty = xy[cx];
                xy[cx] = cy;
                yx[cy] = cx;
            }
 
            // reset inTreeX and inTreeY
            Arrays.fill(inTreeX, false);
            Arrays.fill(inTreeY, false);
 
            // recall function, go to step 1 of the algorithm
            augment(cost, match, inTreeX, inTreeY, 
            prev, xy, yx, slack, slackX, lx, ly);
        }
    }
 
    public static int findMinCost(int[][] cost) {
        int n = cost.length;
 
        // convert cost matrix to profit matrix
        // by multiplying each element by -1
        for(int i = 0; i < n; i++)
            for(int j = 0; j < n; j++)
                cost[i][j] = -1 * cost[i][j];
 
        // to store the results
        int result = 0;
 
        // number of vertices in current matching
        int[] match = new int[]{0};
 
        int[] xy = new int[n];
        int[] yx = new int[n];
        int[] lx = new int[n];
        int[] ly = new int[n];
        int[] slack = new int[n];
        int[] slackX = new int[n];
        int[] prev = new int[n];
 
        Arrays.fill(xy, -1);
        Arrays.fill(yx, -1);
 
        boolean[] inTreeX = new boolean[n];
        boolean[] inTreeY = new boolean[n];
 
        labelIt(cost, lx);
 
        augment(cost, match, inTreeX, inTreeY, prev, 
            xy, yx, slack, slackX, lx, ly);
 
        for(int i = 0; i < n; i++) {
            result += cost[i][xy[i]];
        }
        return -1 * result;
    }
 
    public static void main(String[] args) {
        int[][] cost = {
            {2500, 4000, 3500},
            {4000, 6000, 3500},
            {2000, 4000, 2500}
        };
        System.out.println(findMinCost(cost));
    }
}
Python
from collections import deque
import sys

def labelIt(cost, lx):
    n = len(cost)
    for i in range(n):
        for j in range(n):
            lx[i] = max(lx[i], cost[i][j])

def addTree(x, prevX, inTreeX, prev, slack, slackX, lx, ly, cost):
    inTreeX[x] = True
    prev[x] = prevX
    for y in range(len(slack)):
        if lx[x] + ly[y] - cost[x][y] < slack[y]:
            slack[y] = lx[x] + ly[y] - cost[x][y]
            slackX[y] = x

def updateLabels(inTreeX, inTreeY, slack, lx, ly):
    n = len(slack)
    
    delta = sys.maxsize
    
    for y in range(n):
        if not inTreeY[y]:
            delta = min(delta, slack[y])
    
    for x in range(n):
        if inTreeX[x]:
            lx[x] -= delta
    
    for y in range(n):
        if inTreeY[y]:
            ly[y] += delta
    
    for y in range(n):
        if not inTreeY[y]:
            slack[y] -= delta

def augment(cost, match, inTreeX, inTreeY, prev, xy, yx, slack, slackX, lx, ly):
    
    # augmenting path algorithm
    n = len(cost)
    
    # check if we have found a perfect matching
    if match[0] == n:
        return
    
    x = y = root = 0
    q = deque()
    
    # find root of tree
    for i in range(n):
        if xy[i] == -1:
            root = i
            q.append(root)
            prev[i] = -2
            inTreeX[i] = True
            break
    
    # initialize slack
    for i in range(n):
        slack[i] = lx[root] + ly[i] - cost[root][i]
        slackX[i] = root
    
    # BFS to find augmenting path
    while True:
        
        # building tree with BFS cycle
        while q:
            x = q.popleft()
            
            #iterate through all edges in equality graph
            for y in range(n):
                if lx[x] + ly[y] - cost[x][y] == 0 and not inTreeY[y]:
                    
                    # if y is an exposed vertex in Y
                    # found, so augmenting path exists
                    if yx[y] == -1:
                        x = slackX[y]
                        break
                    else:
                        # else just add y to inTreeY
                        inTreeY[y] = True
                        
                        # add vertex yx[y], which is 
                        # matched with y, to the queue
                        q.append(yx[y])
                        
                        # add edges (x, y) and (y, yx[y]) to the tree
                        addTree(yx[y], x, inTreeX, prev, slack, slackX, lx, ly, cost)
            if y < n:
                break
        
        # augmenting path found
        if y < n:
            break
        
        # else improve labeling
        updateLabels(inTreeX, inTreeY, slack, lx, ly)
        
        for y in range(n):
            if not inTreeY[y] and slack[y] == 0:
                if yx[y] == -1:
                    x = slackX[y]
                    break
                else:
                    inTreeY[y] = True
                    if not inTreeX[yx[y]]:
                        q.append(yx[y])
                        addTree(yx[y], slackX[y], inTreeX, prev, slack, slackX, lx, ly, cost)
        if y < n:
            break
    
    if y < n:
        # augmenting path found
        match[0] += 1
        
        # update xy and yx
        cx = x
        cy = y
        while cx != -2:
            ty = xy[cx]
            xy[cx] = cy
            yx[cy] = cx
            cx = prev[cx]
            cy = ty
        
        # reset inTreeX and inTreeY
        for i in range(n):
            inTreeX[i] = False
            inTreeY[i] = False
        
        # recall function, go to step 1 of the algorithm
        augment(cost, match, inTreeX, inTreeY, prev, xy, yx, slack, slackX, lx, ly)

def findMinCost(cost):
    n = len(cost)
    
    # convert cost matrix to profit matrix
    # by multiplying each element by -1
    for i in range(n):
        for j in range(n):
            cost[i][j] = -1 * cost[i][j]
    
    # to store the results
    result = 0
    
    # number of vertices in current matching
    match = [0]
    
    xy = [-1] * n
    yx = [-1] * n
    lx = [0] * n
    ly = [0] * n
    slack = [0] * n
    slackX = [0] * n
    prev = [0] * n
    
    inTreeX = [False] * n
    inTreeY = [False] * n
    
    labelIt(cost, lx)
    
    augment(cost, match, inTreeX, inTreeY, prev, xy, yx, slack, slackX, lx, ly)
    
    for i in range(n):
        result += cost[i][xy[i]]
    return -1 * result

if __name__ == "__main__":
    cost = [
        [2500, 4000, 3500],
        [4000, 6000, 3500],
        [2000, 4000, 2500]
    ]
    print(findMinCost(cost))
C#
using System;
using System.Collections.Generic;
 
public class GfG {
 
    public static void LabelIt(int[][] cost, int[] lx) {
        int n = cost.Length;
        for (int i = 0; i < n; i++)
            for (int j = 0; j < n; j++)
                lx[i] = Math.Max(lx[i], cost[i][j]);
    }
 
    public static void AddTree(int x, int prevX, bool[] inTreeX, 
        int[] prev, int[] slack, int[] slackX,
         int[] lx, int[] ly, int[][] cost) {
        inTreeX[x] = true;
        prev[x] = prevX;
        for (int y = 0; y < slack.Length; y++) {
            if (lx[x] + ly[y] - cost[x][y] < slack[y]) {
                slack[y] = lx[x] + ly[y] - cost[x][y];
                slackX[y] = x;
            }
        }
    }
 
    public static void UpdateLabels(bool[] inTreeX, bool[] inTreeY,
         int[] slack, int[] lx, int[] ly) {
        int n = slack.Length;
 
        int delta = int.MaxValue;
 
        for (int y = 0; y < n; y++)
            if (!inTreeY[y])
                delta = Math.Min(delta, slack[y]);
 
        for (int x = 0; x < n; x++)
            if (inTreeX[x])
                lx[x] -= delta;
 
        for (int y = 0; y < n; y++)
            if (inTreeY[y])
                ly[y] += delta;
 
        for (int y = 0; y < n; y++)
            if (!inTreeY[y])
                slack[y] -= delta;
 
    }
 
    public static void Augment(int[][] cost, int[] match, bool[] inTreeX, 
        bool[] inTreeY, int[] prev, int[] xy, int[] yx, 
        int[] slack, int[] slackX, int[] lx, int[] ly) {
 
        // augmenting path algorithm
        int n = cost.Length;
 
        // check if we have found a perfect matching
        if (match[0] == n)
            return;
 
        int x = 0, y = 0, root = 0;
 
        Queue<int> q = new Queue<int>();
 
        // find root of tree
        for (int i = 0; i < n; i++) {
 
            if (xy[i] == -1) {
                q.Enqueue(root = i);
                prev[i] = -2;
                inTreeX[i] = true;
                break;
            }
        }
 
        // initialize slack
        for (int i = 0; i < n; i++) {
            slack[i] = lx[root] + ly[i] - cost[root][i];
            slackX[i] = root;
        }
 
        // BFS to find augmenting path
        while (true) {
 
            // building tree with BFS cycle
            while (q.Count != 0) {
 
                // current vertex
                x = q.Dequeue();
 
                //iterate through all edges in equality graph
                for (y = 0; y < n; y++) {
                    if (lx[x] + ly[y] - cost[x][y] == 0 && !inTreeY[y]) {
 
                        // if y is an exposed vertex in Y
                        // found, so augmenting path exists
                        if (yx[y] == -1) {
                            x = slackX[y];
                            break;
                        } 
                        
                        // else just add y to inTreeY
                        else {
                            inTreeY[y] = true;
 
                            // add vertex yx[y], which is 
                            // matched with y, to the queue
                            q.Enqueue(yx[y]);
 
                            // add edges (x, y) and (y, yx[y]) to the tree
                            AddTree(yx[y], x, inTreeX, prev, 
                            slack, slackX, lx, ly, cost);
                        }
                    }
                }
 
                // augmenting path found
                if (y < n)
                    break;
            }
 
            // augmenting path found
            if (y < n)
                break; 
 
            // else improve labeling
            UpdateLabels(inTreeX, inTreeY, slack, lx, ly);
 
            for (y = 0; y < n; y++) {
 
                if (!inTreeY[y] && slack[y] == 0) {
 
                    // if y is an exposed vertex in Y
                    // found, so augmenting path exists
                    if (yx[y] == -1) {
                        x = slackX[y];
                        break;
                    } 
                    
                    // else just add y to inTreeY
                    else {
                        inTreeY[y] = true;
 
                        // add vertex yx[y], which is matched with y, to the queue
                        if (!inTreeX[yx[y]]) {
                            q.Enqueue(yx[y]);
 
                            // add edges (x, y) and (y, yx[y]) to the tree
                            AddTree(yx[y], slackX[y], inTreeX, prev, 
                            slack, slackX, lx, ly, cost);
                        }
                    }
                }
            }
 
            // augmenting path found
            if (y < n)
                break;
        }
 
        if (y < n) {
 
            // augmenting path found
            match[0]++;
 
            // update xy and yx
            for (int cx = x, cy = y, ty; 
                cx != -2; cx = prev[cx], cy = ty) {
                ty = xy[cx];
                xy[cx] = cy;
                yx[cy] = cx;
            }
 
            // reset inTreeX and inTreeY
            for (int i = 0; i < n; i++) {
                inTreeX[i] = false;
                inTreeY[i] = false;
            }
 
            // recall function, go to step 1 of the algorithm
            Augment(cost, match, inTreeX, inTreeY, 
            prev, xy, yx, slack, slackX, lx, ly);
        }
    }
 
    public static int FindMinCost(int[][] cost) {
        int n = cost.Length;
 
        // convert cost matrix to profit matrix
        // by multiplying each element by -1
        for (int i = 0; i < n; i++)
            for (int j = 0; j < n; j++)
                cost[i][j] = -1 * cost[i][j];
 
        // to store the results
        int result = 0;
 
        // number of vertices in current matching
        int[] match = new int[]{0};
 
        int[] xy = new int[n];
        int[] yx = new int[n];
        int[] lx = new int[n];
        int[] ly = new int[n];
        int[] slack = new int[n];
        int[] slackX = new int[n];
        int[] prev = new int[n];
 
        for (int i = 0; i < n; i++) {
            xy[i] = -1;
            yx[i] = -1;
        }
 
        bool[] inTreeX = new bool[n];
        bool[] inTreeY = new bool[n];
 
        LabelIt(cost, lx);
 
        Augment(cost, match, inTreeX, inTreeY, prev, 
            xy, yx, slack, slackX, lx, ly);
 
        for (int i = 0; i < n; i++) {
            result += cost[i][xy[i]];
        }
        return -1 * result;
    }
 
    public static void Main(String[] args) {
        int[][] cost = new int[][] {
            new int[] {2500, 4000, 3500},
            new int[] {4000, 6000, 3500},
            new int[] {2000, 4000, 2500}
        };
        Console.WriteLine(FindMinCost(cost));
    }
}
JavaScript
function labelIt(cost, lx) {
    let n = cost.length;
    for(let i = 0; i < n; i++)
        for(let j = 0; j < n; j++)
            lx[i] = Math.max(lx[i], cost[i][j]);
}
 
function addTree(x, prevX, inTreeX, prev, slack, slackX, lx, ly, cost) {
    inTreeX[x] = true;
    prev[x] = prevX;
    for(let y = 0; y < slack.length; y++) {
        if (lx[x] + ly[y] - cost[x][y] < slack[y]) {
            slack[y] = lx[x] + ly[y] - cost[x][y];
            slackX[y] = x;
        }
    }
}
 
function updateLabels(inTreeX, inTreeY, slack, lx, ly) {
    let n = slack.length;
 
    let delta = Number.MAX_SAFE_INTEGER;
 
    for(let y = 0; y < n; y++)
        if(!inTreeY[y])
            delta = Math.min(delta, slack[y]);
 
    for(let x = 0; x < n; x++)
        if(inTreeX[x])
            lx[x] -= delta;
 
    for(let y = 0; y < n; y++)
        if(inTreeY[y])
            ly[y] += delta;
 
    for(let y = 0; y < n; y++)
        if(!inTreeY[y])
            slack[y] -= delta;
}
 
function augment(cost, match, inTreeX, inTreeY, prev, xy, yx, slack, slackX, lx, ly) {
 
    // augmenting path algorithm
    let n = cost.length;
 
    // check if we have found a perfect matching
    if(match[0] == n)
        return;
 
    let x, y, root;
 
    let q = [];
 
    // find root of tree
    for(let i = 0; i < n; i++) {
 
        if(xy[i] == -1) {
            q.push(root = i);
            prev[i] = -2;
            inTreeX[i] = true;
            break;
        }
    }
 
    // initialize slack
    for(let i = 0; i < n; i++) {
        slack[i] = lx[root] + ly[i] - cost[root][i];
        slackX[i] = root;
    }
 
    // BFS to find augmenting path
    while(true) {
 
        // building tree with BFS cycle
        while(q.length > 0) {
 
            // current vertex
            x = q.shift();
 
            //iterate through all edges in equality graph
            for(y = 0; y < n; y++) {
                if(lx[x] + ly[y] - cost[x][y] == 0 && !inTreeY[y]) {
 
                    // if y is an exposed vertex in Y
                    // found, so augmenting path exists
                    if(yx[y] == -1) {
                        x = slackX[y];
                        break;
                    } 
                    
                    // else just add y to inTreeY
                    else {
                        inTreeY[y] = true;
 
                        // add vertex yx[y], which is 
                        // matched with y, to the queue
                        q.push(yx[y]);
 
                        // add edges (x, y) and (y, yx[y]) to the tree
                        addTree(yx[y], x, inTreeX, prev, 
                            slack, slackX, lx, ly, cost);
                    }
                }
            }
 
            // augmenting path found
            if(y < n)
                break;
        }
 
        // augmenting path found
        if(y < n)
            break; 
 
        // else improve labeling
        updateLabels(inTreeX, inTreeY, slack, lx, ly);
 
        for(y = 0; y < n; y++) {
 
            if(!inTreeY[y] && slack[y] == 0) {
 
                // if y is an exposed vertex in Y
                // found, so augmenting path exists
                if(yx[y] == -1) {
                    x = slackX[y];
                    break;
                } 
                
                // else just add y to inTreeY
                else {
                    inTreeY[y] = true;
 
                    // add vertex yx[y], which is matched with y, to the queue
                    if(!inTreeX[yx[y]]) {
                        q.push(yx[y]);
 
                        // add edges (x, y) and (y, yx[y]) to the tree
                        addTree(yx[y], slackX[y], inTreeX, prev, 
                            slack, slackX, lx, ly, cost);
                    }
                }
            }
        }
 
        // augmenting path found
        if(y < n)
            break;
    }
 
    if(y < n) {
 
        // augmenting path found
        match[0]++;
 
        // update xy and yx
        for(let cx = x, cy = y, ty; 
            cx != -2; cx = prev[cx], cy = ty) {
            ty = xy[cx];
            xy[cx] = cy;
            yx[cy] = cx;
        }
 
        // reset inTreeX and inTreeY
        for(let i = 0; i < n; i++) {
            inTreeX[i] = false;
            inTreeY[i] = false;
        }
 
        // recall function, go to step 1 of the algorithm
        augment(cost, match, inTreeX, inTreeY, 
            prev, xy, yx, slack, slackX, lx, ly);
    }
}
 
function findMinCost(cost) {
    let n = cost.length;
 
    // convert cost matrix to profit matrix
    // by multiplying each element by -1
    for(let i = 0; i < n; i++)
        for(let j = 0; j < n; j++)
            cost[i][j] = -1 * cost[i][j];
 
    // to store the results
    let result = 0;
 
    // number of vertices in current matching
    let match = [0];
 
    let xy = new Array(n).fill(-1);
    let yx = new Array(n).fill(-1);
    let lx = new Array(n).fill(0);
    let ly = new Array(n).fill(0);
    let slack = new Array(n);
    let slackX = new Array(n);
    let prev = new Array(n);
 
    let inTreeX = new Array(n).fill(false);
    let inTreeY = new Array(n).fill(false);
 
    labelIt(cost, lx);
 
    augment(cost, match, inTreeX, inTreeY, prev, 
        xy, yx, slack, slackX, lx, ly);
 
    for(let i = 0; i < n; i++) {
        result += cost[i][xy[i]];
    }
    return -1 * result;
}
 
let cost = [
    [2500, 4000, 3500],
    [4000, 6000, 3500],
    [2000, 4000, 2500]
];
console.log(findMinCost(cost));

Output
9500

Time complexity : O(n^3), where n is the number of workers and jobs. This is because the algorithm implements the Hungarian algorithm, which is known to have a time complexity of O(n^3).
Space complexity :  O(n^2), where n is the number of workers and jobs. This is because the algorithm uses a 2D cost matrix of size n x n to store the costs of assigning each worker to a job, and additional arrays of size n to store the labels, matches, and auxiliary information needed for the algorithm.



Next Article
Article Tags :

Similar Reads