Implementation of stack using Doubly Linked List
Last Updated :
23 Apr, 2025
Stack and doubly linked lists are two important data structures with their own benefits. Stack is a data structure that follows the LIFO (Last In First Out) order and can be implemented using arrays or linked list data structures. Doubly linked list has the advantage that it can also traverse the previous node with the help of “previous” pointer.
Structure of Doubly Linked List
C++
// Declaration of Doubly Linked List
class Node {
public:
int data;
Node* next;
Node* prev;
Node(int val) {
data = val;
next = nullptr;
prev = nullptr;
}
};
Java
// Declaration of Doubly Linked List
class Node {
public int data;
public Node next;
public Node prev;
public Node(int val) {
data = val;
next = null;
prev = null;
}
}
Python
# Declaration of Doubly Linked List
class Node:
def __init__(self, val):
self.data = val
self.next = None
self.prev = None
C#
// Declaration of Doubly Linked List
class Node {
public int data;
public Node next;
public Node prev;
public Node(int val) {
data = val;
next = null;
prev = null;
}
}
JavaScript
// Declaration of Doubly Linked List
class Node {
constructor(val) {
this.data = val;
this.next = null;
this.prev = null;
}
}
Stack Functions to be Implemented
Push()
- If the stack is empty:
- Create a new node and assign the given data to it.
- Set both the “previous” and “next” pointers of the node to
null
as it is the first node in the doubly linked list (DLL). - Assign both “top” and “start” to this new node.
- Otherwise:
- Create a new node and assign the given data to it.
- Set the “previous” pointer of the new node to the current “top” node.
- Set the “next” pointer of the new node to
null
. - Update the “top” pointer to the new node, as it is now the top element of the stack.
Below is given the implementation:
C++
void push(int val) {
Node* h = new Node(val);
// If stack is empty
// then make the new node as top
if (isEmpty()) {
h->prev = NULL;
h->next = NULL;
// As it is first node
// so it is also top and start
start = h;
top = h;
}
else {
top->next = h;
h->next = NULL;
h->prev = top;
top = h;
}
}
Java
void push(int d)
{
Node n = new Node();
n.data = d;
if (n.isEmpty()) {
n.prev = null;
n.next = null;
// As it is first node
// if stack is empty
start = n;
top = n;
}
else {
top.next = n;
n.next = null;
n.prev = top;
top = n;
}
}
Python
def push(self,element):
newP = node(element)
if self.start == None:
self.start = self.top = newP
return
newP.prev = self.top
self.top.next = newP
self.top = newP
C#
public void Push(int d)
{
Node n = new Node();
n.data = d;
if (n.isEmpty())
{
n.prev = null;
n.next = null;
// As it is first node
// if stack is empty
start = n;
top = n;
}
else
{
top.next = n;
n.next = null;
n.prev = top;
top = n;
}
}
JavaScript
function push(d) {
var n = new Node();
n.data = d;
if (isEmpty()) {
n.prev = null;
n.next = null;
start = n;
top = n;
}
else {
top.next = n;
n.next = null;
n.prev = top;
top = n;
}
Pop()
- Check if the stack is empty.
- If it is empty, print a message indicating that the stack is empty.
- Otherwise:
- Set
top->prev->next
to null
. - Update
top
to top->prev
.
Below is given the implementation:
C++
void pop()
{
Node* n;
n = top;
if (isEmpty())
printf("Stack is empty");
else if (top == start) {
top = NULL;
start = NULL;
free(n);
}
else {
top->prev->next = NULL;
top = n->prev;
free(n);
}
}
Java
void pop()
{
Node n = top;
if (n.isEmpty())
System.out.println("Stack is empty");
else if (top == start) {
top = null;
start = null;
}
else {
top.prev.next = null;
top = n.prev;
}
}
Python
def pop(self):
if self.isEmpty():
print('List is Empty')
return
self.top = self.top.prev
if self.top != None: self.top.next = None
C#
public void pop()
{
Node n ;
n = top;
if (n.isEmpty())
Console.Write("Stack is empty");
else if (top == start) {
top = null;
start = null;
n = null;
}
else {
top.prev.next = null;
top = n.prev;
n = null;
}
}
JavaScript
function pop() {
let n;
n = top;
if (isEmpty()) {
console.log("Stack is empty");
}
else if (top === start) {
top = null;
start = null;
free(n);
}
else {
top.prev.next = null;
top = n.prev;
free(n);
}
}
isEmpty()
- Check the
top
pointer.- If
top
is null
, return true
. - Otherwise, return
false
.
Below is given the implementation:
C++
bool isEmpty()
{
if (start == nullptr)
return true;
return false;
}
Java
boolean isEmpty()
{
if (start == null)
return true;
return false;
}
Python
def isEmpty(self):
if self.start:
return False
return True
C#
public bool IsEmpty()
{
if (start == null)
{
return true;
}
return false;
}
// This code is contributed by akashish__
JavaScript
function isEmpty() {
return start == null;
}
printStack()
- Check if the stack is empty.
- If it is empty, print “Stack is empty.”
- Otherwise, start from the
start
node and traverse the doubly linked list until the end.- Print the
data
of each node while traversing.
Below is given the implementation:
C++
void printStack()
{
if (isEmpty())
printf("Stack is empty");
else {
Node* ptr = start;
while (ptr != NULL) {
printf("%d ", ptr->data);
ptr = ptr->next;
}
printf("\n");
}
}
Java
void printstack()
{
if (isEmpty())
System.out.println("Stack is empty");
else {
Node ptr = start;
while (ptr != null) {
System.out.print(ptr.data + " ");
ptr = ptr.next;
}
System.out.println();
}
}
Python
def printstack(self):
if self.isEmpty():
print('List is Empty')
return
curr = self.start
while curr != None:
print(curr.val,end = ' ')
curr = curr.next
print()
C#
void PrintStack()
{
if (IsEmpty())
Console.WriteLine("Stack is empty");
else {
Node ptr = start;
while (ptr != null) {
Console.Write(ptr.data + " ");
ptr = ptr.next;
}
Console.WriteLine();
}
}
// This code is contributed by akashish__
JavaScript
function printStack() {
if (isEmpty()) {
console.log("Stack is empty");
} else {
let ptr = start;
while (ptr != null) {
console.log(ptr.data + " ");
ptr = ptr.next;
}
console.log("\n");
}
}
stackSize()
- Check if the stack is empty.
- If it is empty, return
0
.
- Otherwise, initialize a counter and start from the
start
node.- Traverse the doubly linked list until the end, incrementing the counter for each node.
- Return the final count.
Below is given the implementation:
C++
void stackSize()
{
int c = 0;
if (isEmpty())
printf("Stack is empty");
else {
Node* ptr = start;
while (ptr != NULL) {
c++;
ptr = ptr->next;
}
}
printf("%d \n ", c);
}
Java
void stackSize()
{
int c = 0;
if (isEmpty())
System.out.println("Stack is empty");
else {
Node ptr = start;
while (ptr != null) {
c++;
ptr = ptr.next;
}
}
System.out.println(c);
}
Python
def stackSize(self):
curr = self.start
len = 0
while curr != None:
len += 1
curr = curr.next
print(len)
C#
static void stackSize()
{
int c = 0;
if (IsEmpty())
Console.WriteLine("Stack is empty");
else
{
Node ptr = start;
while (ptr != null)
{
c++;
ptr = ptr.next;
}
}
Console.WriteLine("{0}", c);
}
JavaScript
function stackSize() {
let c = 0;
if (isEmpty()) {
console.log("Stack is empty");
} else {
let ptr = start;
while (ptr !== null) {
c++;
ptr = ptr.next;
}
}
console.log(c);
}
topElement()
- Check if the stack is empty.
- If it is empty, print that there is no top element.
- Otherwise, print the data stored in the
top
node of the stack.
Below is given the implementation:
C++
void topElement()
{
if (isEmpty())
printf("Stack is empty");
else
printf(%d", top->data);
}
Java
void topelement()
{
if (isEmpty())
System.out.println("Stack is empty");
else
System.out.println(top.data);
}
Python
def topelement(self):
if self.isEmpty():
print("Stack is empty")
else:
print(self.top.val)
C#
void TopElement()
{
if (IsEmpty())
Console.WriteLine("Stack is empty");
else
Console.WriteLine(top.data);
}
JavaScript
function topElement() {
if (isEmpty()) {
console.log("Stack is empty");
} else {
console.log(top.data);
}
}
Implementation of Stack using Doubly Linked List

Implementation of Stack using Doubly Linked List:
Below is given the implementation:
C++
#include <bits/stdc++.h>
using namespace std;
// DLL Node structure
class Node {
public:
int data;
Node* next;
Node* prev;
Node(int d) {
data = d;
next = nullptr;
prev = nullptr;
}
};
// Doubly Linked List structure
class DLL {
Node* start;
Node* top;
public:
DLL() {
start = nullptr;
top = nullptr;
}
// Check if stack is empty
bool isEmpty() {
return start == nullptr;
}
// add element to stack
void push(int val) {
Node* cur = new Node(val);
// if stack is empty,
// set start and top to cur
if (isEmpty()) {
start = cur;
top = cur;
}
// else add cur to the top of stack
else {
top->next = cur;
cur->prev = top;
top = cur;
}
}
// remove top element from stack
void pop() {
Node* cur = top;
// if stack is empty, return
if (isEmpty()) {
cout << "Stack is Empty";
return;
}
// else if there is only one element
else if (top == start) {
top = nullptr;
start = nullptr;
delete cur;
}
// else remove the top element
else {
top->prev->next = nullptr;
top = cur->prev;
delete cur;
}
}
// print the top element
void topElement() {
if (isEmpty())
cout << "Stack is empty";
else
cout << top->data << endl;
}
// find the stack size
void stackSize() {
int cnt = 0;
Node* ptr = start;
while (ptr != nullptr) {
cnt++;
ptr = ptr->next;
}
cout << cnt << endl;
}
// print the stack
void printStack() {
Node* ptr = start;
while (ptr != nullptr) {
cout << ptr->data << " ";
ptr = ptr->next;
}
cout << endl;
}
};
int main() {
DLL stack;
stack.push(2);
stack.push(5);
stack.push(10);
stack.printStack();
stack.topElement();
stack.stackSize();
stack.pop();
stack.printStack();
stack.topElement();
stack.stackSize();
return 0;
}
Java
import java.util.*;
class DLL {
Node start;
Node top;
public DLL() {
start = null;
top = null;
}
// Check if stack is empty
public boolean isEmpty() {
return start == null;
}
// add element to stack
public void push(int val) {
Node cur = new Node(val);
// if stack is empty,
// set start and top to cur
if (isEmpty()) {
start = cur;
top = cur;
}
// else add cur to the top of stack
else {
top.next = cur;
cur.prev = top;
top = cur;
}
}
// remove top element from stack
public void pop() {
Node cur = top;
// if stack is empty, return
if (isEmpty()) {
System.out.print("Stack is Empty");
return;
}
// else if there is only one element
else if (top == start) {
top = null;
start = null;
// In Java, garbage collector handles deletion
}
// else remove the top element
else {
top.prev.next = null;
top = cur.prev;
// In Java, garbage collector handles deletion
}
}
// print the top element
public void topElement() {
if (isEmpty())
System.out.print("Stack is empty");
else
System.out.println(top.data);
}
// find the stack size
public void stackSize() {
int cnt = 0;
Node ptr = start;
while (ptr != null) {
cnt++;
ptr = ptr.next;
}
System.out.println(cnt);
}
// print the stack
public void printStack() {
Node ptr = start;
while (ptr != null) {
System.out.print(ptr.data + " ");
ptr = ptr.next;
}
System.out.println();
}
}
class Node {
int data;
Node next;
Node prev;
Node(int d) {
data = d;
next = null;
prev = null;
}
}
class GfG {
public static void main(String[] args) {
DLL stack = new DLL();
stack.push(2);
stack.push(5);
stack.push(10);
stack.printStack();
stack.topElement();
stack.stackSize();
stack.pop();
stack.printStack();
stack.topElement();
stack.stackSize();
}
}
Python
# DLL Node structure
class Node:
def __init__(self, d):
self.data = d
self.next = None
self.prev = None
# Doubly Linked List structure
class DLL:
def __init__(self):
self.start = None
self.top = None
# Check if stack is empty
def isEmpty(self):
return self.start is None
# add element to stack
def push(self, val):
cur = Node(val)
# if stack is empty,
# set start and top to cur
if self.isEmpty():
self.start = cur
self.top = cur
# else add cur to the top of stack
else:
self.top.next = cur
cur.prev = self.top
self.top = cur
# remove top element from stack
def pop(self):
cur = self.top
# if stack is empty, return
if self.isEmpty():
print("Stack is Empty", end="")
return
# else if there is only one element
elif self.top == self.start:
self.top = None
self.start = None
del cur
# else remove the top element
else:
self.top.prev.next = None
self.top = cur.prev
del cur
# print the top element
def topElement(self):
if self.isEmpty():
print("Stack is empty", end="")
else:
print(self.top.data)
# find the stack size
def stackSize(self):
cnt = 0
ptr = self.start
while ptr is not None:
cnt += 1
ptr = ptr.next
print(cnt)
# print the stack
def printStack(self):
ptr = self.start
while ptr is not None:
print(ptr.data, end=" ")
ptr = ptr.next
print()
if __name__ == "__main__":
stack = DLL()
stack.push(2)
stack.push(5)
stack.push(10)
stack.printStack()
stack.topElement()
stack.stackSize()
stack.pop()
stack.printStack()
stack.topElement()
stack.stackSize()
C#
using System;
using System.Collections.Generic;
class Node {
public int data;
public Node next;
public Node prev;
public Node(int d) {
data = d;
next = null;
prev = null;
}
}
class DLL {
static Node start;
static Node top;
public DLL() {
start = null;
top = null;
}
// Check if stack is empty
public bool isEmpty() {
return start == null;
}
// add element to stack
public void push(int val) {
Node cur = new Node(val);
// if stack is empty,
// set start and top to cur
if (isEmpty()) {
start = cur;
top = cur;
}
// else add cur to the top of stack
else {
top.next = cur;
cur.prev = top;
top = cur;
}
}
// remove top element from stack
public void pop() {
Node cur = top;
// if stack is empty, return
if (isEmpty()) {
Console.Write("Stack is Empty");
return;
}
// else if there is only one element
else if (top == start) {
top = null;
start = null;
// Garbage collector handles deletion
}
// else remove the top element
else {
top.prev.next = null;
top = cur.prev;
}
}
// print the top element
public void topElement() {
if (isEmpty())
Console.Write("Stack is empty");
else
Console.WriteLine(top.data);
}
// find the stack size
public void stackSize() {
int cnt = 0;
Node ptr = start;
while (ptr != null) {
cnt++;
ptr = ptr.next;
}
Console.WriteLine(cnt);
}
// print the stack
public void printStack() {
Node ptr = start;
while (ptr != null) {
Console.Write(ptr.data + " ");
ptr = ptr.next;
}
Console.WriteLine();
}
}
class GfG {
public static void Main(string[] args) {
DLL stack = new DLL();
stack.push(2);
stack.push(5);
stack.push(10);
stack.printStack();
stack.topElement();
stack.stackSize();
stack.pop();
stack.printStack();
stack.topElement();
stack.stackSize();
}
}
JavaScript
// Declaration of DLL Node structure
class Node {
constructor(d) {
this.data = d;
this.next = null;
this.prev = null;
}
}
// Doubly Linked List structure
class DLL {
static start = null;
static top = null;
// Check if stack is empty
static isEmpty() {
return DLL.start === null;
}
// add element to stack
static push(val) {
let cur = new Node(val);
// if stack is empty,
// set start and top to cur
if (DLL.isEmpty()) {
DLL.start = cur;
DLL.top = cur;
}
// else add cur to the top of stack
else {
DLL.top.next = cur;
cur.prev = DLL.top;
DLL.top = cur;
}
}
// remove top element from stack
static pop() {
let cur = DLL.top;
// if stack is empty, return
if (DLL.isEmpty()) {
console.log("Stack is Empty");
return;
}
// else if there is only one element
else if (DLL.top === DLL.start) {
DLL.top = null;
DLL.start = null;
// No explicit deletion needed in JavaScript
}
// else remove the top element
else {
DLL.top.prev.next = null;
DLL.top = cur.prev;
// No explicit deletion needed in JavaScript
}
}
// print the top element
static topElement() {
if (DLL.isEmpty())
console.log("Stack is empty");
else
console.log(DLL.top.data);
}
// find the stack size
static stackSize() {
let cnt = 0;
let ptr = DLL.start;
while (ptr !== null) {
cnt++;
ptr = ptr.next;
}
console.log(cnt);
}
// print the stack
static printStack() {
let ptr = DLL.start;
let output = "";
while (ptr !== null) {
output += ptr.data + " ";
ptr = ptr.next;
}
console.log(output);
}
}
function main() {
DLL.push(2);
DLL.push(5);
DLL.push(10);
DLL.printStack();
DLL.topElement();
DLL.stackSize();
DLL.pop();
DLL.printStack();
DLL.topElement();
DLL.stackSize();
}
main();
Output2 5 10
10
3
2 5
5
2
Time complexity:
- push(): O(1) as we are not traversing the entire list.
- pop(): O(1) as we are not traversing the entire list.
- isEmpty(): O(1) as we are checking only the head node.
- topElement(): O(1) as we are printing the value of the head node only.
- stackSize(): As we traversed the whole list, it will be O(n), where n is the number of nodes in the linked list.
- printStack(): As we traversed the whole list, it will be O(n), where n is the number of nodes in the linked list.
Auxiliary Space: O(n), to store the elements in the doubly linked list.
Similar Reads
Implementation of Deque using doubly linked list
A Deque (Double-Ended Queue) is a data structure that allows adding and removing elements from both the front and rear ends. Using a doubly linked list to implement a deque makes these operations very efficient, as each node in the list has pointers to both the previous and next nodes. This means we
9 min read
Operations of Doubly Linked List with Implementation
A Doubly Linked List (DLL) contains an extra pointer, typically called the previous pointer, together with the next pointer and data which are there in a singly linked list. Below are operations on the given DLL: Add a node at the front of DLL: The new node is always added before the head of the giv
15+ min read
Implement a stack using singly linked list
To implement a stack using a singly linked list, we need to ensure that all operations follow the LIFO (Last In, First Out) principle. This means that the most recently added element is always the first one to be removed. In this approach, we use a singly linked list, where each node contains data a
13 min read
Implementation of Stack Using Array in C
A stack is a linear data structure that follows the Last In First Out (LIFO) principle. This means that the most recently added element is the first one to be removed. In this article, we will learn how to implement a stack using an array in C. Implementation of Stack Using Arrays in CIn the array-b
5 min read
Python | Stack using Doubly Linked List
A stack is a collection of objects that are inserted and removed using Last in First out Principle(LIFO). User can insert elements into the stack, and can only access or remove the recently inserted object on top of the stack. The main advantage of using LinkedList over array for implementing stack
4 min read
Stack Using Linked List in C
Stack is a linear data structure that follows the Last-In-First-Out (LIFO) order of operations. This means the last element added to the stack will be the first one to be removed. There are different ways using which we can implement stack data structure in C. In this article, we will learn how to i
7 min read
Queue - Linked List Implementation
In this article, the Linked List implementation of the queue data structure is discussed and implemented. Print '-1' if the queue is empty. Approach: To solve the problem follow the below idea: we maintain two pointers, front and rear. The front points to the first item of the queue and rear points
8 min read
Queue Implementation Using Linked List in Java
Queue is the linear data structure that follows the First In First Out(FIFO) principle where the elements are added at the one end, called the rear, and removed from the other end, called the front. Using the linked list to implement the queue allows for dynamic memory utilization, avoiding the cons
4 min read
Implementation of Stack in JavaScript
A stack is a fundamental data structure in computer science that follows the Last In, First Out (LIFO) principle. This means that the last element added to the stack will be the first one to be removed. Stacks are widely used in various applications, such as function call management, undo mechanisms
4 min read
C++ Program to Implement Queue using Linked List
Queue is the fundamental data structure that follows the First In, First Out (FIFO) principle where the elements are added at the one end, called the rear and removed from other end called the front. In this article, we will learn how to implement queue in C++ using a linked list. Queue Using Linked
5 min read