Inversion Count using Policy Based Data Structure
Pre-requisite: Policy based data structure Given an array arr[], the task is to find the number of inversions for each element of the array.
Examples:
Input: {5, 2, 3, 2, 3, 8, 1} Output: {0, 1, 1, 2, 1, 0, 6} Explanation: Inversion count for each elements - Element at index 0: There are no elements with less index than 0, which is greater than arr[0]. Element at index 1: There is one element with less index than 1, which is greater than 2. That is 5. Element at index 2: There is one element with less index than 2, which is greater than 3. That is 5. Element at index 3: There are two elements with less index than 3, which is greater than 2. That is 5, 3. Element at index 4: There is one element with less index than 4, which is greater than 3. That is 5. Element at index 5: There are no elements with less index than 5, which is greater than 8. Element at index 6: There are six elements with less index than 6, which is greater than 1. That is 5, 2, 3, 2, 3 Input: arr[] = {3, 2, 1} Output: {0, 1, 2}
Approach:
- Create a policy based data structure of type pair.
- Iterate the given array and perform the following steps -
- Apply order_of_key({X, N+1}) for each element X where N is the size of array. Note: order_of_key is nothing but lower_bound. Also, we used N+1 because it is greater than all the indices in the array.
- Let order_of_key comes out to be l, then the inversion count for current element will be equal to
which is ultimately the count of elements smaller than X and came before X in the array. - Insert the current element X along with its index in the policy-based data structure St. The index is inserted along with each element for its unique identification in the set and to deal with duplicates.
Below is the implementation of the above approach:
// C++ implementation to find the
// Inversion Count using Policy
// Based Data Structure
#include <bits/stdc++.h>
// Header files for policy based
// data structure which are
// to be included
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
using namespace std;
typedef tree<pair<int, int>, null_type,
less<pair<int, int> >, rb_tree_tag,
tree_order_statistics_node_update>
new_data_set;
// Function to find the inversion count
// of the elements of the array
void inversionCount(int arr[], int n)
{
int ans[n];
// Making a new policy based data
// structure which will
// store pair<int, int>
new_data_set St;
// Loop to iterate over the elements
// of the array
for (int i = 0; i < n; i++) {
// Now to find lower_bound of
// the element X, we will use pair
// as {x, n+1} to cover all the
// elements and even the duplicates
int cur = St.order_of_key({ arr[i],
n + 1 });
ans[i] = St.size() - cur;
// Store element along with index
St.insert({ arr[i], i });
}
for (int i = 0; i < n; i++) {
cout << ans[i] << " ";
}
cout << "\n";
}
// Driver Code
int main()
{
int arr[] = { 5, 2, 3, 2, 3, 8, 1 };
int n = sizeof(arr) / sizeof(int);
// Function Call
inversionCount(arr, n);
return 0;
}
// C++ implementation to find the
// Inversion Count using Policy
// Based Data Structure
// Header files for policy based
// data structure which are
// to be included
using namespace __gnu_pbds;
using namespace std;
typedef tree<pair<int, int>, null_type,
less<pair<int, int> >, rb_tree_tag,
tree_order_statistics_node_update>
new_data_set;
// Function to find the inversion count
// of the elements of the array
void inversionCount(int arr[], int n)
{
int ans[n];
// Making a new policy based data
// structure which will
// store pair<int, int>
new_data_set St;
// Loop to iterate over the elements
// of the array
for (int i = 0; i < n; i++) {
// Now to find lower_bound of
// the element X, we will use pair
// as {x, n+1} to cover all the
// elements and even the duplicates
int cur = St.order_of_key({ arr[i],
n + 1 });
ans[i] = St.size() - cur;
// Store element along with index
St.insert({ arr[i], i });
}
for (int i = 0; i < n; i++) {
cout << ans[i] << " ";
}
cout << "\n";
}
// Driver Code
int main()
{
int arr[] = { 5, 2, 3, 2, 3, 8, 1 };
int n = sizeof(arr) / sizeof(int);
// Function Call
inversionCount(arr, n);
return 0;
}
import java.util.*;
import java.io.*;
import java.lang.*;
import java.util.AbstractMap.SimpleEntry;
import java.util.Map.Entry;
// Header files for policy based data structure which are to be included
import java.util.TreeSet;
public class GFG
{
public static void inversionCount(int[] arr, int n)
{
int[] ans = new int[n];
// Making a new policy based data structure which will store pair<int, int>
TreeSet<Entry<Integer, Integer>> St = new TreeSet<>(new Comparator<Entry<Integer, Integer>>() {
@Override
public int compare(Entry<Integer, Integer> a, Entry<Integer, Integer> b) {
return a.getKey().compareTo(b.getKey());
}
});
// Loop to iterate over the elements of the array
for (int i = 0; i < n; i++) {
// Now to find lower_bound of the element X, we will use pair as {x, n+1} to cover all the
// elements and even the duplicates
int cur = St.headSet(new SimpleEntry<Integer, Integer>(arr[i], n+1)).size();
ans[i] = St.size() - cur;
// Store element along with index
St.add(new SimpleEntry<Integer, Integer>(arr[i], i));
}
for (int i = 0; i < n; i++) {
System.out.print(ans[i] + " ");
}
System.out.print("\n");
}
public static void main(String[] args) {
int[] arr = { 5, 2, 3, 2, 3, 8, 1 };
int n = arr.length;
// Function Call
inversionCount(arr, n);
}
}
# Python implementation to find the
# Inversion Count using Policy
# Based Data Structure
# Import required libraries
from collections import defaultdict
from bisect import bisect_right
# Function to find the inversion count
# of the elements of the array
def inversionCount(arr, n):
ans = [0] * n
# Making a new dictionary to store index
# of every element
index_dict = defaultdict(list)
# Loop to iterate over the elements
# of the array
for i in range(n):
# Find the index of the current element in
# the sorted list of elements so far
cur = bisect_right(index_dict[arr[i]], i)
ans[i] = i - cur
# Store the current element's index
index_dict[arr[i]].append(i)
for i in range(n):
print(ans[i], end=' ')
print()
# Driver Code
if __name__ == '__main__':
arr = [5, 2, 3, 2, 3, 8, 1]
n = len(arr)
# Function Call
inversionCount(arr, n)
using System;
public class Program
{
// Binary Indexed Tree
static int[] bit;
static int MAX = 10000;
// Function to update the Binary Indexed Tree
static void update(int idx, int val)
{
// Update all the ancestors of idx
for (; idx <= MAX; idx += idx & -idx)
bit[idx] += val;
}
// Function to query the Binary Indexed Tree
static int query(int idx)
{
int sum = 0;
// Get the sum of all elements up to idx
for (; idx > 0; idx -= idx & -idx)
sum += bit[idx];
return sum;
}
public static void InversionCount(int[] arr, int n)
{
// Initialize the Binary Indexed Tree
bit = new int[MAX + 1];
int[] ans = new int[n];
for (int i = 0; i < n; i++)
{
// Count of elements greater than arr[i]
int cur = query(MAX) - query(arr[i]);
ans[i] = cur;
// Insert the negative of arr[i] to get a reverse sorted set
update(arr[i], 1);
}
// Print the inversion count for each element
for (int i = 0; i < n; i++)
{
Console.Write(ans[i] + " ");
}
Console.WriteLine();
}
public static void Main()
{
int[] arr = { 5, 2, 3, 2, 3, 8, 1 };
int n = arr.Length;
// Call the function to calculate inversion count
InversionCount(arr, n);
}
}
// Function to find the inversion count
// of the elements of the array
function inversionCount(arr, n) {
let ans = new Array(n).fill(0);
// Making a new object to store index
// of every element
let index_dict = {};
// Loop to iterate over the elements
// of the array
for (let i = 0; i < n; i++) {
// Find the index of the current element in
// the sorted list of elements so far
if (arr[i] in index_dict) {
let cur = index_dict[arr[i]].filter((index) => index < i).length;
ans[i] = i - cur;
} else {
ans[i] = i;
}
// Store the current element's index
if (arr[i] in index_dict) {
index_dict[arr[i]].push(i);
} else {
index_dict[arr[i]] = [i];
}
}
console.log(ans.join(' '));
}
// Driver Code
let arr = [5, 2, 3, 2, 3, 8, 1];
let n = arr.length;
// Function Call
inversionCount(arr, n);
// This code is contributed by Aditya Sharma
Output
0 1 1 2 1 0 6