Longest Bitonic Subsequence
Last Updated :
07 Mar, 2025
Given an array arr[] containing n positive integers, a subsequence of numbers is called bitonic if it is first strictly increasing, then strictly decreasing. The task is to find the length of the longest bitonic subsequence.
Note: Only strictly increasing (no decreasing part) or a strictly decreasing sequence should not be considered as a bitonic sequence.
Examples:
Input: arr[]= [12, 11, 40, 5, 3, 1]
Output: 5
Explanation: The Longest Bitonic Subsequence is {12, 40, 5, 3, 1} which is of length 5.
Input: arr[] = [80, 60, 30]
Output: 0
Explanation: There is no possible Bitonic Subsequence.
Using Recursion - O(n*(2^n)) Time and O(n) Space
The recursive approach for finding the longest bitonic subsequence relies on breaking the problem into two parts for each potential peak:
- Calculate the Longest Increasing Subsequence (LIS) ending at the current element.
- Calculate the Longest Decreasing Subsequence (LDS) starting from the current element.
At each step, the algorithm explores two choices:
- Include the current element in the subsequence if it satisfies the increasing or decreasing condition.
- Skip the current element and move to the next index.
Recurrence Relation:
For any index i, the solution involves:
- Finding the LIS to the left: if nums[i] < nums[prev]
LIS(i, prev) = max(LIS(i-1, prev),1 + LIS(i-1, i))
- Finding the LDS to the right: if nums[i] < nums[prev]
LDS(i, prev) = max(LDS(i+1, prev), 1 + LDS(i+1, i))
Base Cases:
- For LIS: LIS(i, prev) = 0, if i < 0
- For LDS: LDS(i, prev) = 0, if i >= n
C++
// C++ implementation to find longest Bitonic
// subsequence using Recursion
#include <bits/stdc++.h>
using namespace std;
// Function to find the longest decreasing subsequence
// to the left
int left(int prev, int idx, vector<int>& arr) {
if (idx < 0) {
return 0;
}
// Check if nums[idx] can be included
// in decreasing subsequence
int include = 0;
if (arr[idx] < arr[prev]) {
include = 1 + left(idx, idx - 1, arr);
}
// Return the maximum of including
// or excluding nums[idx]
return max(include, left(prev, idx - 1, arr));
}
// Function to find the longest decreasing
// subsequence to the right
int right(int prev, int idx, vector<int>& arr) {
if (idx >= arr.size()) {
return 0;
}
// Check if nums[idx] can be included
// in decreasing subsequence
int include = 0;
if (arr[idx] < arr[prev]) {
include = 1 + right(idx, idx + 1, arr);
}
// Return the maximum of including or
// excluding nums[idx]
return max(include, right(prev, idx + 1, arr));
}
// Function to find the longest bitonic sequence
int LongestBitonicSequence(vector<int>& arr) {
int maxLength = 0;
// Iterate over potential peaks in the array
for (int i = 1; i < arr.size() - 1; i++) {
// Find the longest decreasing subsequences
// on both sides of arr[i]
int leftLen = left(i, i - 1, arr);
int rightLen = right(i, i + 1, arr);
// Ensure both left and right subsequences are valid
if (leftLen == 0 || rightLen == 0) {
leftLen = 0;
rightLen = 0;
}
// Update maximum bitonic sequence length
maxLength = max(maxLength, leftLen + rightLen + 1);
}
// If no valid bitonic sequence, return 0
return (maxLength < 3) ? 0 : maxLength;
}
int main() {
vector<int> arr = {12, 11, 40, 5, 3, 1};
cout << LongestBitonicSequence(arr) << endl;
return 0;
}
Java
// Java implementation to find longest Bitonic
// subsequence using Recursion
import java.util.ArrayList;
import java.util.*;
class GfG {
// Function to find the longest decreasing subsequence
// to the left
static int left(int prev, int idx, ArrayList<Integer> arr) {
if (idx < 0) {
return 0;
}
// Check if nums[idx] can be included
// in decreasing subsequence
int include = 0;
if (arr.get(idx) < arr.get(prev)) {
include = 1 + left(idx, idx - 1, arr);
}
// Return the maximum of including
// or excluding nums[idx]
return Math.max(include, left(prev, idx - 1, arr));
}
// Function to find the longest decreasing
// subsequence to the right
static int right(int prev, int idx, ArrayList<Integer> arr) {
if (idx >= arr.size()) {
return 0;
}
// Check if nums[idx] can be included
// in decreasing subsequence
int include = 0;
if (arr.get(idx) < arr.get(prev)) {
include = 1 + right(idx, idx + 1, arr);
}
// Return the maximum of including or
// excluding nums[idx]
return Math.max(include, right(prev, idx + 1, arr));
}
// Function to find the longest bitonic sequence
static int LongestBitonicSequence(ArrayList<Integer> arr) {
int maxLength = 0;
// Iterate over potential peaks in the array
for (int i = 1; i < arr.size() - 1; i++) {
// Find the longest decreasing subsequences
// on both sides of nums[i]
int leftLen = left(i, i - 1, arr);
int rightLen = right(i, i + 1, arr);
// Ensure both left and right subsequences are valid
if (leftLen == 0 || rightLen == 0) {
leftLen = 0;
rightLen = 0;
}
// Update maximum bitonic sequence length
maxLength = Math.max(maxLength, leftLen + rightLen + 1);
}
// If no valid bitonic sequence, return 0
return (maxLength < 3) ? 0 : maxLength;
}
public static void main(String[] args) {
ArrayList<Integer> arr
= new ArrayList<>(Arrays.asList(12, 11, 40, 5, 3, 1));
System.out.println(LongestBitonicSequence(arr));
}
}
Python
# Python implementation to find longest Bitonic
# subsequence using Recursion
# Function to find the longest decreasing
# subsequence to the left
def left(prev, idx, arr):
if idx < 0:
return 0
# Check if arr[idx] can be included in the
# decreasing subsequence
include = 0
if arr[idx] < arr[prev]:
include = 1 + left(idx, idx - 1, arr)
# Return the maximum of including or excluding arr[idx]
return max(include, left(prev, idx - 1, arr))
# Function to find the longest decreasing subsequence
# to the right
def right(prev, idx, arr):
if idx >= len(arr):
return 0
# Check if nums[idx] can be included in the
# decreasing subsequence
include = 0
if arr[idx] < arr[prev]:
include = 1 + right(idx, idx + 1, arr)
# Return the maximum of including or excluding arr[idx]
return max(include, right(prev, idx + 1, arr))
# Function to find the longest bitonic sequence
def LongestBitonicSequence(arr):
max_length = 0
# Iterate over potential peaks in the array
for i in range(1, len(arr) - 1):
# Find the longest decreasing subsequences
# on both sides of arr[i]
left_len = left(i, i - 1, arr)
right_len = right(i, i + 1, arr)
# Ensure both left and right subsequences are valid
if left_len == 0 or right_len == 0:
left_len = 0
right_len = 0
# Update maximum bitonic sequence length
max_length = max(max_length, left_len + right_len + 1)
# If no valid bitonic sequence, return 0
return 0 if max_length < 3 else max_length
if __name__ == "__main__":
arr = [12, 11, 40, 5, 3, 1]
print(LongestBitonicSequence(arr))
C#
// C# implementation to find longest Bitonic
// subsequence using Recursion
using System;
using System.Collections.Generic;
class GfG {
// Function to find the longest decreasing
// subsequence to the left
static int Left(int prev, int idx, List<int> arr) {
if (idx < 0) {
return 0;
}
// Check if nums[idx] can be included in
// decreasing subsequence
int include = 0;
if (arr[idx] < arr[prev]) {
include = 1 + Left(idx, idx - 1, arr);
}
// Return the maximum of including or excluding nums[idx]
return Math.Max(include, Left(prev, idx - 1, arr));
}
// Function to find the longest decreasing
// subsequence to the right
static int Right(int prev, int idx, List<int> arr) {
if (idx >= arr.Count) {
return 0;
}
// Check if nums[idx] can be included
// in decreasing subsequence
int include = 0;
if (arr[idx] < arr[prev]) {
include = 1 + Right(idx, idx + 1, arr);
}
// Return the maximum of including or excluding nums[idx]
return Math.Max(include, Right(prev, idx + 1, arr));
}
// Function to find the longest bitonic sequence
static int LongestBitonicSequence(List<int> arr) {
int maxLength = 0;
// Iterate over potential peaks in the array
for (int i = 1; i < arr.Count - 1; i++) {
// Find the longest decreasing subsequences
// on both sides of nums[i]
int leftLen = Left(i, i - 1, arr);
int rightLen = Right(i, i + 1, arr);
// Ensure both left and right subsequences are valid
if (leftLen == 0 || rightLen == 0) {
leftLen = 0;
rightLen = 0;
}
// Update maximum bitonic sequence length
maxLength = Math.Max(maxLength,
leftLen + rightLen + 1);
}
// If no valid bitonic sequence, return 0
return (maxLength < 3) ? 0 : maxLength;
}
static void Main() {
List<int> arr
= new List<int> { 12, 11, 40, 5, 3, 1 };
Console.WriteLine(LongestBitonicSequence(arr));
}
}
JavaScript
// Javascript implementation to find longest Bitonic
// subsequence using Recursion<script>
// Function to find the longest decreasing subsequence to the left
function left(prev, idx, arr) {
if (idx < 0) {
return 0;
}
// Check if arr[idx] can be included in decreasing subsequence
let include = 0;
if (arr[idx] < arr[prev]) {
include = 1 + left(idx, idx - 1, arr);
}
// Return the maximum of including or excluding arr[idx]
return Math.max(include, left(prev, idx - 1, arr));
}
// Function to find the longest decreasing
// subsequence to the right
function right(prev, idx, arr) {
if (idx >= arr.length) {
return 0;
}
// Check if arr[idx] can be included in
// decreasing subsequence
let include = 0;
if (arr[idx] < arr[prev]) {
include = 1 + right(idx, idx + 1, arr);
}
// Return the maximum of including or
// excluding arr[idx]
return Math.max(include, right(prev, idx + 1, arr));
}
// Function to find the longest bitonic sequence
function longestBitonicSequence(nums) {
let maxLength = 0;
// Iterate over potential peaks in the array
for (let i = 1; i < arr.length - 1; i++) {
// Find the longest decreasing subsequences
// on both sides of arr[i]
let leftLen = left(i, i - 1, arr);
let rightLen = right(i, i + 1, arr);
// Ensure both left and right subsequences are valid
if (leftLen === 0 || rightLen === 0) {
leftLen = 0;
rightLen = 0;
}
// Update maximum bitonic sequence length
maxLength = Math.max(maxLength,
leftLen + rightLen + 1);
}
// If no valid bitonic sequence, return 0
return maxLength < 3 ? 0 : maxLength;
}
const arr = [12, 11, 40, 5, 3, 1];
console.log(longestBitonicSequence(arr));
Using Top-Down DP (Memoization) - O(n^2) Time and O(n^2) Space
1. Optimal Substructure: The solution for finding the longest bitonic subsequence around a peak element can be derived from solutions to smaller subproblems. Specifically:
- The left subsequence is determined by comparing each element on the left to the current peak, recursively finding the longest decreasing sequence.
- left(prev, idx) = max(1 + left(idx, idx - 1), left(prev, idx - 1)) if arr[idx] < arr[prev]. Otherwise, it is left(prev, idx - 1).
- Base case: left(prev, idx) = 0 if idx < 0.
- The right subsequence is similarly found by exploring decreasing sequences to the right of the peak.
- right(prev, idx) = max(1 + right(idx, idx + 1), right(prev, idx + 1)) if arr[idx] < arr[prev]. Otherwise, it is right(prev, idx + 1).
- Base case: right(prev, idx) = 0 if idx >= arr.size().
Total length at a peak nums[i] is given by: Total Length = leftLen + rightLen + 1.
2. Overlapping Subproblems: Subproblems like left(prev, idx) or right(prev, idx) for specific values of prev and idx are repeatedly computed, memoization avoids redundant calculations by storing results in 2D arrays leftMemo and rightMemo.
- If leftMemo[prev][idx] != -1 or rightMemo[prev][idx] != -1 , return the stored result.
C++
// C++ implementation to find longest Bitonic
// subsequence using Recursion and Memoization
#include <bits/stdc++.h>
using namespace std;
// Function to find the longest decreasing subsequence
// to the left with memoization
int left(int prev, int idx, vector<int>& arr,
vector<vector<int>>& leftMemo) {
if (idx < 0) {
return 0;
}
if (leftMemo[prev][idx] != -1) {
return leftMemo[prev][idx];
}
// Check if arr[idx] can be included in
// decreasing subsequence
int include = 0;
if (arr[idx] < arr[prev]) {
include = 1 + left(idx, idx - 1, arr, leftMemo);
}
// Store and return the result
return leftMemo[prev][idx]
= max(include, left(prev, idx - 1, arr, leftMemo));
}
// Function to find the longest decreasing subsequence
// to the right with memoization
int right(int prev, int idx, vector<int>& arr,
vector<vector<int>>& rightMemo) {
if (idx >= arr.size()) {
return 0;
}
if (rightMemo[prev][idx] != -1) {
return rightMemo[prev][idx];
}
// Check if arr[idx] can be included
// in decreasing subsequence
int include = 0;
if (arr[idx] < arr[prev]) {
include = 1 + right(idx, idx + 1, arr, rightMemo);
}
// Store and return the result
return rightMemo[prev][idx]
= max(include, right(prev, idx + 1, arr, rightMemo));
}
// Function to find the longest bitonic sequence
int LongestBitonicSequence(vector<int>& arr) {
int n = arr.size();
int maxLength = 0;
// Initialize memoization tables
vector<vector<int>> leftMemo(n, vector<int>(n, -1));
vector<vector<int>> rightMemo(n, vector<int>(n, -1));
// Iterate over potential peaks in the array
for (int i = 1; i < n - 1; i++) {
// Find the longest decreasing subsequences
// on both sides of arr[i]
int leftLen = left(i, i - 1, arr, leftMemo);
int rightLen = right(i, i + 1, arr, rightMemo);
// Ensure both left and right subsequences are valid
if (leftLen == 0 || rightLen == 0) {
leftLen = 0;
rightLen = 0;
}
// Update maximum bitonic sequence length
maxLength = max(maxLength, leftLen + rightLen + 1);
}
// If no valid bitonic sequence, return 0
return (maxLength < 3) ? 0 : maxLength;
}
int main() {
vector<int> arr = {12, 11, 40, 5, 3, 1};
cout << LongestBitonicSequence(arr) << endl;
return 0;
}
Java
// Java implementation to find longest Bitonic
// subsequence using Recursion and Memoization
import java.util.*;
class GfG {
// Function to find the longest decreasing subsequence
// to the left with memoization
static int left(int prev, int idx, ArrayList<Integer> arr,
int[][] leftMemo) {
if (idx < 0) {
return 0;
}
if (leftMemo[prev][idx] != -1) {
return leftMemo[prev][idx];
}
// Check if arr[idx] can be included in
// decreasing subsequence
int include = 0;
if (arr.get(idx) < arr.get(prev)) {
include = 1 + left(idx, idx - 1, arr, leftMemo);
}
// Store and return the result
return leftMemo[prev][idx]
= Math.max(include, left(prev, idx - 1, arr, leftMemo));
}
// Function to find the longest decreasing subsequence
// to the right with memoization
static int right(int prev, int idx, ArrayList<Integer> arr,
int[][] rightMemo) {
if (idx >= arr.size()) {
return 0;
}
if (rightMemo[prev][idx] != -1) {
return rightMemo[prev][idx];
}
// Check if arr[idx] can be included in
// decreasing subsequence
int include = 0;
if (arr.get(idx) < arr.get(prev)) {
include = 1 + right(idx, idx + 1, arr, rightMemo);
}
// Store and return the result
return rightMemo[prev][idx]
= Math.max(include, right(prev, idx + 1, arr, rightMemo));
}
// Function to find the longest bitonic sequence
static int LongestBitonicSequence(ArrayList<Integer> arr) {
int n = arr.size();
int maxLength = 0;
// Initialize memoization tables
int[][] leftMemo = new int[n][n];
int[][] rightMemo = new int[n][n];
// Fill memoization tables with -1
for (int i = 0; i < n; i++) {
Arrays.fill(leftMemo[i], -1);
Arrays.fill(rightMemo[i], -1);
}
// Iterate over potential peaks in the array
for (int i = 1; i < n - 1; i++) {
// Find the longest decreasing subsequences
// on both sides of arr[i]
int leftLen = left(i, i - 1, arr, leftMemo);
int rightLen = right(i, i + 1, arr, rightMemo);
// Ensure both left and right subsequences are valid
if (leftLen == 0 || rightLen == 0) {
leftLen = 0;
rightLen = 0;
}
// Update maximum bitonic sequence length
maxLength = Math.max(maxLength, leftLen + rightLen + 1);
}
// If no valid bitonic sequence, return 0
return (maxLength < 3) ? 0 : maxLength;
}
public static void main(String[] args) {
ArrayList<Integer> arr
= new ArrayList<>(Arrays.asList(12, 11, 40, 5, 3, 1));
System.out.println(LongestBitonicSequence(arr));
}
}
Python
# Python implementation to find longest Bitonic
# subsequence using Recursion and Memoization
# Function to find the longest decreasing subsequence
# to the left
def left(prev, idx, arr, leftMemo):
if idx < 0:
return 0
if leftMemo[prev][idx] != -1:
return leftMemo[prev][idx]
# Check if arr[idx] can be included in
# decreasing subsequence
include = 0
if arr[idx] < arr[prev]:
include = 1 + left(idx, idx - 1, arr, leftMemo)
# Store and return the result
leftMemo[prev][idx] = max(include,
left(prev, idx - 1, arr, leftMemo))
return leftMemo[prev][idx]
# Function to find the longest decreasing subsequence
# to the right
def right(prev, idx, arr, rightMemo):
if idx >= len(arr):
return 0
if rightMemo[prev][idx] != -1:
return rightMemo[prev][idx]
# Check if arr[idx] can be included in decreasing
# subsequence
include = 0
if arr[idx] < arr[prev]:
include = 1 + right(idx, idx + 1, arr, rightMemo)
# Store and return the result
rightMemo[prev][idx] = max(include,
right(prev, idx + 1, arr, rightMemo))
return rightMemo[prev][idx]
def LongestBitonicSequence(arr):
n = len(arr)
maxLength = 0
# Initialize memoization tables
leftMemo = [[-1 for i in range(n)] for i in range(n)]
rightMemo = [[-1 for i in range(n)] for i in range(n)]
# Iterate over potential peaks in the array
for i in range(1, n - 1):
# Find the longest decreasing subsequences
# on both sides of arr[i]
leftLen = left(i, i - 1, arr, leftMemo)
rightLen = right(i, i + 1, arr, rightMemo)
# Ensure both left and right subsequences are valid
if leftLen == 0 or rightLen == 0:
leftLen = 0
rightLen = 0
# Update maximum bitonic sequence length
maxLength = max(maxLength, leftLen + rightLen + 1)
# If no valid bitonic sequence, return 0
return 0 if maxLength < 3 else maxLength
if __name__ == "__main__":
arr = [12, 11, 40, 5, 3, 1]
print(LongestBitonicSequence(arr))
C#
// C# implementation to find longest Bitonic
// subsequence using Recursion and Memoization
using System;
using System.Collections.Generic;
class GfG {
// Function to find the longest decreasing subsequence
// to the left with memoization
static int Left(int prev, int idx,
List<int> arr, int[,] leftMemo) {
if (idx < 0) {
return 0;
}
if (leftMemo[prev, idx] != -1) {
return leftMemo[prev, idx];
}
// Check if arr[idx] can be included in
// decreasing subsequence
int include = 0;
if (arr[idx] < arr[prev]) {
include = 1 + Left(idx, idx - 1, arr, leftMemo);
}
// Store and return the result
leftMemo[prev, idx]
= Math.Max(include, Left(prev,
idx - 1, arr, leftMemo));
return leftMemo[prev, idx];
}
// Function to find the longest decreasing subsequence
// to the right with memoization
static int Right(int prev, int idx,
List<int> arr, int[,] rightMemo) {
if (idx >= arr.Count) {
return 0;
}
if (rightMemo[prev, idx] != -1) {
return rightMemo[prev, idx];
}
// Check if arr[idx] can be included in
// decreasing subsequence
int include = 0;
if (arr[idx] < arr[prev]) {
include = 1 + Right(idx, idx + 1,
arr, rightMemo);
}
// Store and return the result
rightMemo[prev, idx]
= Math.Max(include, Right(prev,
idx + 1, arr, rightMemo));
return rightMemo[prev, idx];
}
// Function to find the longest bitonic sequence
static int LongestBitonicSequence(List<int> arr) {
int n = arr.Count;
int maxLength = 0;
// Initialize memoization tables
int[,] leftMemo = new int[n, n];
int[,] rightMemo = new int[n, n];
// Fill memoization tables with -1
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
leftMemo[i, j] = -1;
rightMemo[i, j] = -1;
}
}
// Iterate over potential peaks in the array
for (int i = 1; i < n - 1; i++) {
// Find the longest decreasing subsequences
// on both sides of arr[i]
int leftLen = Left(i, i - 1, arr, leftMemo);
int rightLen = Right(i, i + 1, arr, rightMemo);
// Ensure both left and right subsequences are valid
if (leftLen == 0 || rightLen == 0) {
leftLen = 0;
rightLen = 0;
}
// Update maximum bitonic sequence length
maxLength = Math.Max(maxLength,
leftLen + rightLen + 1);
}
return (maxLength < 3) ? 0 : maxLength;
}
static void Main(string[] args) {
List<int> arr
= new List<int>{12, 11, 40, 5, 3, 1};
Console.WriteLine(LongestBitonicSequence(arr));
}
}
JavaScript
// Javascript implementation to find longest Bitonic
// subsequence using Recursion and Memoization
// Function to find the longest decreasing subsequence
// to the left with memoization
function left(prev, idx, arr, leftMemo) {
if (idx < 0) {
return 0;
}
if (leftMemo[prev][idx] !== -1) {
return leftMemo[prev][idx];
}
// Check if arr[idx] can be included in decreasing subsequence
let include = 0;
if (arr[idx] < arr[prev]) {
include = 1 + left(idx, idx - 1, arr, leftMemo);
}
// Store and return the result
return leftMemo[prev][idx]
= Math.max(include, left(prev,
idx - 1, arr, leftMemo));
}
// Function to find the longest decreasing
// subsequence to the right with memoization
function right(prev, idx, arr, rightMemo) {
if (idx >= arr.length) {
return 0;
}
if (rightMemo[prev][idx] !== -1) {
return rightMemo[prev][idx];
}
// Check if arr[idx] can be included in decreasing subsequence
let include = 0;
if (arr[idx] < arr[prev]) {
include = 1 + right(idx, idx + 1, arr, rightMemo);
}
// Store and return the result
return rightMemo[prev][idx]
= Math.max(include, right(prev,
idx + 1, arr, rightMemo));
}
// Function to find the longest bitonic sequence
function LongestBitonicSequence(arr) {
const n = arr.length;
let maxLength = 0;
// Initialize memoization tables
const leftMemo = Array.from({ length: n },
() => Array(n).fill(-1));
const rightMemo = Array.from({ length: n },
() => Array(n).fill(-1));
// Iterate over potential peaks in the array
for (let i = 1; i < n - 1; i++) {
// Find the longest decreasing subsequences
// on both sides of arr[i]
let leftLen = left(i, i - 1, arr, leftMemo);
let rightLen = right(i, i + 1, arr, rightMemo);
// Ensure both left and right subsequences are valid
if (leftLen === 0 || rightLen === 0) {
leftLen = 0;
rightLen = 0;
}
// Update maximum bitonic sequence length
maxLength = Math.max(maxLength, leftLen + rightLen + 1);
}
// If no valid bitonic sequence, return 0
return maxLength < 3 ? 0 : maxLength;
}
const arr = [12, 11, 40, 5, 3, 1];
console.log(LongestBitonicSequence(arr));
Using Bottom-Up DP (Tabulation) - O(n^2) Time and O(n) Space
This approach iteratively builds the solution from smaller subproblems in a bottom-up manner, avoiding recursion. This problem is a variation of standard Longest Increasing Subsequence (LIS) problem.
We create two 1D arrays, left and right, of size n.
- left[i] stores the length of the Longest Increasing Subsequence (LIS) ending at index i.
- right[i] stores the length of the Longest Decreasing Subsequence (LDS) starting at index i.
The dynamic programming relations are as follows:
For LIS:
If arr[i] > arr[j], then
left[i] = max(left[i], left[j] + 1)
This means the LIS at i can be extended by the LIS ending at j.
For LDS:
If arr[i] > arr[j], then
right[i] = max(right[i], right[j] + 1)
This means the LDS at i can be extended by the LDS starting at j.
The final bitonic length for a peak at index i is calculated as: maxLength = max(maxLength, left[i] + right[i] - 1)
The subtraction of 1 accounts for the peak element being counted in both LIS and LDS.
C++
// C++ implementation to find the longest
// bitonic subsequence using tabulation
#include <bits/stdc++.h>
using namespace std;
int LongestBitonicSequence(vector<int>& arr) {
int n = arr.size();
// If there are less than 3 elements,
// no bitonic subsequence exists
if (n < 3) return 0;
// Create tables for longest increasing subsequence
// (LIS) and longest decreasing subsequence (LDS)
vector<int> left(n, 1), right(n, 1);
// Fill left table for LIS
for (int i = 1; i < n; i++) {
for (int j = 0; j < i; j++) {
// If arr[i] is greater than arr[j],
// update LIS value at i
if (arr[i] > arr[j]) {
left[i] = max(left[i], left[j] + 1);
}
}
}
// Fill right table for LDS
for (int i = n - 2; i >= 0; i--) {
// Compare each element with subsequent
// ones to build LDS
for (int j = n - 1; j > i; j--) {
// If arr[i] is greater than arr[j],
// update LDS value at i
if (arr[i] > arr[j]) {
right[i] = max(right[i], right[j] + 1);
}
}
}
// Calculate the maximum length of bitonic subsequence
int maxLength = 0;
for (int i = 0; i < n; i++) {
// Check if both LIS and LDS are valid
// for the current index
if (left[i] > 1 && right[i] > 1) {
// Update maxLength considering both LIS
// and LDS, subtracting 1 for the peak element
maxLength = max(maxLength, left[i] + right[i] - 1);
}
}
// If no valid bitonic sequence, return 0
return maxLength < 3 ? 0 : maxLength;
}
int main() {
vector<int> arr = {12, 11, 40, 5, 3, 1};
cout << LongestBitonicSequence(arr) << endl;
return 0;
}
Java
// Java implementation to find the longest
// bitonic subsequence using tabulation
import java.util.*;
class GfG {
// Function to find the longest bitonic subsequence
static int LongestBitonicSequence(ArrayList<Integer> arr) {
int n = arr.size();
// If there are less than 3 elements,
// no bitonic subsequence exists
if (n < 3) return 0;
// Create ArrayLists for longest increasing subsequence
// (LIS) and longest decreasing subsequence (LDS)
ArrayList<Integer> left
= new ArrayList<>(Collections.nCopies(n, 1));
ArrayList<Integer> right
= new ArrayList<>(Collections.nCopies(n, 1));
// Fill left ArrayList for LIS
for (int i = 1; i < n; i++) {
for (int j = 0; j < i; j++) {
// If arr[i] is greater than arr[j],
// update LIS value at i
if (arr.get(i) > arr.get(j)) {
left.set(i, Math.max(left.get(i),
left.get(j) + 1));
}
}
}
// Fill right ArrayList for LDS
for (int i = n - 2; i >= 0; i--) {
// Compare each element with subsequent
// ones to build LDS
for (int j = n - 1; j > i; j--) {
// If arr[i] is greater than arr[j],
// update LDS value at i
if (arr.get(i) > arr.get(j)) {
right.set(i, Math.max(right.get(i),
right.get(j) + 1));
}
}
}
// Calculate the maximum length of bitonic subsequence
int maxLength = 0;
for (int i = 0; i < n; i++) {
// Check if both LIS and LDS are valid
// for the current index
if (left.get(i) > 1 && right.get(i) > 1) {
// Update maxLength considering both LIS
// and LDS, subtracting 1 for the peak element
maxLength = Math.max(maxLength,
left.get(i) + right.get(i) - 1);
}
}
// If no valid bitonic sequence, return 0
return maxLength < 3 ? 0 : maxLength;
}
public static void main(String[] args) {
ArrayList<Integer> arr
= new ArrayList<>(Arrays.asList(12, 11, 40, 5, 3, 1));
System.out.println(LongestBitonicSequence(arr));
}
}
Python
# Python implementation to find the longest
# bitonic subsequence using tabulation
def LongestBitonicSequence(arr):
n = len(arr)
# If there are less than 3 elements,
# no bitonic subsequence exists
if n < 3:
return 0
# Create lists for longest increasing subsequence
# (LIS) and longest decreasing subsequence (LDS)
left = [1] * n
right = [1] * n
# Fill left list for LIS
for i in range(1, n):
for j in range(i):
# If arr[i] is greater than arr[j],
# update LIS value at i
if arr[i] > arr[j]:
left[i] = max(left[i], left[j] + 1)
# Fill right list for LDS
for i in range(n - 2, -1, -1):
# Compare each element with subsequent
# ones to build LDS
for j in range(n - 1, i, -1):
# If arr[i] is greater than arr[j],
# update LDS value at i
if arr[i] > arr[j]:
right[i] = max(right[i], right[j] + 1)
# Calculate the maximum length of bitonic subsequence
maxLength = 0
for i in range(n):
# Check if both LIS and LDS are valid
# for the current index
if left[i] > 1 and right[i] > 1:
# Update maxLength considering both LIS
# and LDS, subtracting 1 for the peak element
maxLength = max(maxLength, left[i] + right[i] - 1)
# If no valid bitonic sequence, return 0
return maxLength if maxLength >= 3 else 0
if __name__ == "__main__":
arr = [12, 11, 40, 5, 3, 1]
print(LongestBitonicSequence(arr))
C#
// C# implementation to find the longest
// bitonic subsequence using tabulation
using System;
using System.Collections.Generic;
class GfG {
static int LongestBitonicSequence(List<int> arr) {
int n = arr.Count;
// If there are less than 3 elements,
// no bitonic subsequence exists
if (n < 3) return 0;
// Create lists for longest increasing subsequence
// (LIS) and longest decreasing subsequence (LDS)
List<int> left = new List<int>(new int[n]);
List<int> right = new List<int>(new int[n]);
// Initialize lists with 1
for (int i = 0; i < n; i++) {
left[i] = 1;
right[i] = 1;
}
// Fill left list for LIS
for (int i = 1; i < n; i++) {
for (int j = 0; j < i; j++) {
// If arr[i] is greater than arr[j],
// update LIS value at i
if (arr[i] > arr[j]) {
left[i] = Math.Max(left[i], left[j] + 1);
}
}
}
// Fill right list for LDS
for (int i = n - 2; i >= 0; i--) {
// Compare each element with subsequent
// ones to build LDS
for (int j = n - 1; j > i; j--) {
// If arr[i] is greater than arr[j],
// update LDS value at i
if (arr[i] > arr[j]) {
right[i] = Math.Max(right[i], right[j] + 1);
}
}
}
// Calculate the maximum length of bitonic subsequence
int maxLength = 0;
for (int i = 0; i < n; i++) {
// Check if both LIS and LDS are valid
// for the current index
if (left[i] > 1 && right[i] > 1) {
// Update maxLength considering both LIS
// and LDS, subtracting 1 for the peak element
maxLength = Math.Max(maxLength, left[i] + right[i] - 1);
}
}
// If no valid bitonic sequence, return 0
return maxLength < 3 ? 0 : maxLength;
}
static void Main() {
List<int> arr = new List<int> { 12, 11, 40, 5, 3, 1 };
Console.WriteLine(LongestBitonicSequence(arr));
}
}
JavaScript
// Javascript implementation to find the longest
// bitonic subsequence using tabulation
function LongestBitonicSequence(arr) {
const n = arr.length;
// If there are less than 3 elements,
// no bitonic subsequence exists
if (n < 3) return 0;
// Create arrays for longest increasing subsequence
// (LIS) and longest decreasing subsequence (LDS)
const left = Array(n).fill(1);
const right = Array(n).fill(1);
// Fill left array for LIS
for (let i = 1; i < n; i++) {
for (let j = 0; j < i; j++) {
// If arr[i] is greater than arr[j],
// update LIS value at i
if (arr[i] > arr[j]) {
left[i] = Math.max(left[i], left[j] + 1);
}
}
}
// Fill right array for LDS
for (let i = n - 2; i >= 0; i--) {
// Compare each element with subsequent
// ones to build LDS
for (let j = n - 1; j > i; j--) {
// If arr[i] is greater than arr[j],
// update LDS value at i
if (arr[i] > arr[j]) {
right[i] = Math.max(right[i], right[j] + 1);
}
}
}
// Calculate the maximum length of bitonic subsequence
let maxLength = 0;
for (let i = 0; i < n; i++) {
// Check if both LIS and LDS are valid
// for the current index
if (left[i] > 1 && right[i] > 1) {
// Update maxLength considering both LIS
// and LDS, subtracting 1 for the peak element
maxLength = Math.max(maxLength, left[i] + right[i] - 1);
}
}
// If no valid bitonic sequence, return 0
return maxLength < 3 ? 0 : maxLength;
}
const arr = [12, 11, 40, 5, 3, 1];
console.log(LongestBitonicSequence(arr));
Similar Reads
DSA Tutorial - Learn Data Structures and Algorithms
DSA (Data Structures and Algorithms) is the study of organizing data efficiently using data structures like arrays, stacks, and trees, paired with step-by-step procedures (or algorithms) to solve problems effectively. Data structures manage how data is stored and accessed, while algorithms focus on
7 min read
Quick Sort
QuickSort is a sorting algorithm based on the Divide and Conquer that picks an element as a pivot and partitions the given array around the picked pivot by placing the pivot in its correct position in the sorted array. It works on the principle of divide and conquer, breaking down the problem into s
12 min read
Merge Sort - Data Structure and Algorithms Tutorials
Merge sort is a popular sorting algorithm known for its efficiency and stability. It follows the divide-and-conquer approach. It works by recursively dividing the input array into two halves, recursively sorting the two halves and finally merging them back together to obtain the sorted array. Merge
14 min read
Bubble Sort Algorithm
Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in the wrong order. This algorithm is not suitable for large data sets as its average and worst-case time complexity are quite high.We sort the array using multiple passes. After the fir
8 min read
Breadth First Search or BFS for a Graph
Given a undirected graph represented by an adjacency list adj, where each adj[i] represents the list of vertices connected to vertex i. Perform a Breadth First Search (BFS) traversal starting from vertex 0, visiting vertices from left to right according to the adjacency list, and return a list conta
15+ min read
Data Structures Tutorial
Data structures are the fundamental building blocks of computer programming. They define how data is organized, stored, and manipulated within a program. Understanding data structures is very important for developing efficient and effective algorithms. What is Data Structure?A data structure is a st
2 min read
Binary Search Algorithm - Iterative and Recursive Implementation
Binary Search Algorithm is a searching algorithm used in a sorted array by repeatedly dividing the search interval in half. The idea of binary search is to use the information that the array is sorted and reduce the time complexity to O(log N). Binary Search AlgorithmConditions to apply Binary Searc
15 min read
Insertion Sort Algorithm
Insertion sort is a simple sorting algorithm that works by iteratively inserting each element of an unsorted list into its correct position in a sorted portion of the list. It is like sorting playing cards in your hands. You split the cards into two groups: the sorted cards and the unsorted cards. T
9 min read
Dijkstra's Algorithm to find Shortest Paths from a Source to all
Given a weighted undirected graph represented as an edge list and a source vertex src, find the shortest path distances from the source vertex to all other vertices in the graph. The graph contains V vertices, numbered from 0 to V - 1.Note: The given graph does not contain any negative edge. Example
12 min read
Selection Sort
Selection Sort is a comparison-based sorting algorithm. It sorts an array by repeatedly selecting the smallest (or largest) element from the unsorted portion and swapping it with the first unsorted element. This process continues until the entire array is sorted.First we find the smallest element an
8 min read