LCA in BST - Lowest Common Ancestor in Binary Search Tree
Last Updated :
11 Feb, 2025
Given two nodes n1 and n2 of a Binary Search Tree, find the Lowest Common Ancestor (LCA). You may assume that both values exist in the tree.
The Lowest Common Ancestor between two nodes n1 and n2 is defined as the lowest node that has both n1 and n2 as descendants (where we allow a node to be a descendant of itself). In other words, the LCA of n1 and n2 is the shared ancestor of n1 and n2 that is located farthest from the root [i.e., closest to n1 and n2].
Examples:
Input Tree:
Input: LCA of 10 and 14
Output: 12
Explanation: 12 is the closest node to both 10 and 14, which is also an ancestor of both the nodes.
Input: LCA of 8 and 14
Output: 8
Explanation: 8 is the closest node to both 8 and 14, which is also an ancestor of both the nodes.
LCA of Normal Binary Tree Methods - O(n) Time
We can use all the methods discussed in Lowest Common Ancestor in a Binary Tree. The methods discussed there give us the best possible time complexity as O(n) where n is the number of nodes in BST. We can do better if we use BST properties.
Using BST Properties (Recursive Approach) - O(h) Time and O(h) Space
In a Binary search tree, while traversing the tree from top to bottom the first node which lies in between the two numbers n1 and n2 is the LCA of the nodes, i.e. the first node n with the lowest depth which lies in between n1 and n2 (n1 <= n <= n2, assumingn1 < n2).
So just recursively traverse the BST , if node's value is greater than both n1 and n2 then our LCA lies in the left side of the node, if it is smaller than both n1 and n2, then LCA lies on the right side. Otherwise, the root is LCA (assuming that both n1 and n2 are present in BST).
C++
//Driver Code Starts
// C++ program to find LCA of given node in BST
// Using Properties of BST and Recursion
#include <iostream>
using namespace std;
class Node {
public:
int data;
Node* left;
Node* right;
Node(int val) {
data = val;
left = right = nullptr;
}
};
//Driver Code Ends
// Function to find LCA of nodes n1 and n2, assuming
// both are present in the BST
Node* LCA(Node* root, Node* n1, Node* n2) {
if (root == nullptr)
return nullptr;
// If both n1 and n2 are smaller than
// root, go to left subtree
if (root->data > n1->data && root->data > n2->data)
return LCA(root->left, n1, n2);
// If both n1 and n2 are greater than
// root, go to right subtree
if (root->data < n1->data && root->data < n2->data)
return LCA(root->right, n1, n2);
// If nodes n1 and n2 are on the opposite sides,
// then root is the LCA
return root;
}
//Driver Code Starts
int main() {
// Representation of input BST:
// 20
// / \
// 8 22
// / \
// 4 12
// / \
// 10 14
Node* root = new Node(20);
root->left = new Node(8);
root->right = new Node(22);
root->left->left = new Node(4);
root->left->right = new Node(12);
root->left->right->left = new Node(10);
root->left->right->right = new Node(14);
Node* n1 = root->left->left; // Node 4
Node* n2 = root->left->right->right; // Node 14
Node* res = LCA(root, n1, n2);
cout << res->data << endl;
return 0;
}
//Driver Code Ends
C
//Driver Code Starts
// C program to find LCA of given node in BST
// Using Properties of BST and Recursion
#include <stdio.h>
#include <stdlib.h>
typedef struct Node {
int data;
struct Node* left;
struct Node* right;
} Node;
// Utility function to create a new node
Node* newNode(int val) {
Node* node = (Node*)malloc(sizeof(Node));
node->data = val;
node->left = node->right = NULL;
return node;
}
//Driver Code Ends
// Function to find LCA of nodes n1 and n2, assuming
// both are present in the BST
Node* LCA(Node* root, Node* n1, Node* n2) {
if (root == NULL)
return NULL;
// If both n1 and n2 are smaller than root,
// go to left subtree
if (root->data > n1->data && root->data > n2->data)
return LCA(root->left, n1, n2);
// If both n1 and n2 are greater than root,
// go to right subtree
if (root->data < n1->data && root->data < n2->data)
return LCA(root->right, n1, n2);
// If nodes n1 and n2 are on the opposite sides,
// root is the LCA
return root;
}
//Driver Code Starts
int main() {
// Representation of input BST:
// 20
// / \
// 8 22
// / \
// 4 12
// / \
// 10 14
Node* root = newNode(20);
root->left = newNode(8);
root->right = newNode(22);
root->left->left = newNode(4);
root->left->right = newNode(12);
root->left->right->left = newNode(10);
root->left->right->right = newNode(14);
Node* n1 = root->left->left; // Node 4
Node* n2 = root->left->right->right; // Node 14
Node* res = LCA(root, n1, n2);
printf("%d
", res->data);
return 0;
}
//Driver Code Ends
Java
//Driver Code Starts
// Java program to find LCA of given node in BST
// Using Properties of BST and Recursion
class Node {
int data;
Node left, right;
Node(int val) {
data = val;
left = right = null;
}
}
class GfG {
//Driver Code Ends
// Function to find LCA of nodes n1 and n2, assuming
// both are present in the BST
static Node LCA(Node root, Node n1, Node n2) {
if (root == null)
return null;
// If both n1 and n2 are smaller than root,
// go to left subtree
if (root.data > n1.data && root.data > n2.data)
return LCA(root.left, n1, n2);
// If both n1 and n2 are greater than root,
// go to right subtree
if (root.data < n1.data && root.data < n2.data)
return LCA(root.right, n1, n2);
// If nodes n1 and n2 are on the opposite sides,
// root is the LCA
return root;
}
//Driver Code Starts
public static void main(String[] args) {
// Representation of input BST:
// 20
// / \
// 8 22
// / \
// 4 12
// / \
// 10 14
Node root = new Node(20);
root.left = new Node(8);
root.right = new Node(22);
root.left.left = new Node(4);
root.left.right = new Node(12);
root.left.right.left = new Node(10);
root.left.right.right = new Node(14);
Node n1 = root.left.left; // Node 4
Node n2 = root.left.right.right; // Node 14
Node res = LCA(root, n1, n2);
System.out.println(res.data);
}
}
//Driver Code Ends
Python
#Driver Code Starts
# Python program to find LCA of given node in BST
# Using Properties of BST and Recursion
class Node:
def __init__(self, val):
self.data = val
self.left = None
self.right = None
#Driver Code Ends
# Function to find LCA of nodes n1 and n2, assuming
# both are present in the BST
def LCA(root, n1, n2):
if root is None:
return None
# If both n1 and n2 are smaller than root,
# go to left subtree
if root.data > n1.data and root.data > n2.data:
return LCA(root.left, n1, n2)
# If both n1 and n2 are greater than root,
# go to right subtree
if root.data < n1.data and root.data < n2.data:
return LCA(root.right, n1, n2)
# If nodes n1 and n2 are on the opposite sides,
# root is the LCA
return root
#Driver Code Starts
if __name__ == "__main__":
# Representation of input BST:
# 20
# / \
# 8 22
# / \
# 4 12
# / \
# 10 14
root = Node(20)
root.left = Node(8)
root.right = Node(22)
root.left.left = Node(4)
root.left.right = Node(12)
root.left.right.left = Node(10)
root.left.right.right = Node(14)
n1 = root.left.left # Node 4
n2 = root.left.right.right # Node 14
res = LCA(root, n1, n2)
print(res.data)
#Driver Code Ends
C#
//Driver Code Starts
// C# program to find LCA of given node in BST
// Using Properties of BST and Recursion
using System;
class Node {
public int data;
public Node left, right;
public Node(int val) {
data = val;
left = right = null;
}
}
class GfG {
//Driver Code Ends
// Function to find LCA of nodes n1 and n2, assuming
// both are present in the BST
static Node LCA(Node root, Node n1, Node n2) {
if (root == null)
return null;
// If both n1 and n2 are smaller than root,
// go to left subtree
if (root.data > n1.data && root.data > n2.data)
return LCA(root.left, n1, n2);
// If both n1 and n2 are greater than root,
// go to right subtree
if (root.data < n1.data && root.data < n2.data)
return LCA(root.right, n1, n2);
// If nodes n1 and n2 are on the opposite sides,
// root is the LCA
return root;
}
//Driver Code Starts
static void Main(string[] args) {
// Representation of input BST:
// 20
// / \
// 8 22
// / \
// 4 12
// / \
// 10 14
Node root = new Node(20);
root.left = new Node(8);
root.right = new Node(22);
root.left.left = new Node(4);
root.left.right = new Node(12);
root.left.right.left = new Node(10);
root.left.right.right = new Node(14);
Node n1 = root.left.left; // Node 4
Node n2 = root.left.right.right; // Node 14
Node res = LCA(root, n1, n2);
Console.WriteLine(res.data);
}
}
//Driver Code Ends
JavaScript
//Driver Code Starts
// JavaScript program to find LCA of given node in BST
// Using Properties of BST and Recursion
class Node {
constructor(val) {
this.data = val;
this.left = null;
this.right = null;
}
}
//Driver Code Ends
// Function to find LCA of nodes n1 and n2, assuming
// both are present in the BST
function LCA(root, n1, n2) {
if (root === null)
return null;
// If both n1 and n2 are smaller than root, go to left subtree
if (root.data > n1.data && root.data > n2.data)
return LCA(root.left, n1, n2);
// If both n1 and n2 are greater than root, go to right subtree
if (root.data < n1.data && root.data < n2.data)
return LCA(root.right, n1, n2);
// If nodes n1 and n2 are on the opposite sides, root is the LCA
return root;
}
//Driver Code Starts
// Driver Code
// Representation of input BST:
// 20
// / \
// 8 22
// / \
// 4 12
// / \
// 10 14
const root = new Node(20);
root.left = new Node(8);
root.right = new Node(22);
root.left.left = new Node(4);
root.left.right = new Node(12);
root.left.right.left = new Node(10);
root.left.right.right = new Node(14);
const n1 = root.left.left; // Node 4
const n2 = root.left.right.right; // Node 14
const res = LCA(root, n1, n2);
console.log(res.data);
//Driver Code Ends
Using BST Properties (Iterative Method) - O(h) Time and O(1) Space
The auxiliary space in the above method can be optimized by eliminating recursion. Below is the iterative implementation of this approach.
C++
// C++ program to find LCA of given node in BST
// Using Properties of BST and Iteration
#include <iostream>
using namespace std;
class Node {
public:
int data;
Node* left;
Node* right;
Node(int val) {
data = val;
left = right = nullptr;
}
};
// Function to find LCA of n1 and n2, assuming
// that both nodes n1 and n2 are present in BST
Node* LCA(Node* root, Node* n1, Node* n2) {
while (root != nullptr) {
// If both n1 and n2 are smaller than root,
// then LCA lies in left
if (root->data > n1->data && root->data > n2->data)
root = root->left;
// If both n1 and n2 are greater than root,
// then LCA lies in right
else if (root->data < n1->data && root->data < n2->data)
root = root->right;
// Else Ancestor is found
else
break;
}
return root;
}
int main() {
// Representation of input BST:
// 20
// / \
// 8 22
// / \
// 4 12
// / \
// 10 14
Node* root = new Node(20);
root->left = new Node(8);
root->right = new Node(22);
root->left->left = new Node(4);
root->left->right = new Node(12);
root->left->right->left = new Node(10);
root->left->right->right = new Node(14);
Node* n1 = root->left->left; // Node 4
Node* n2 = root->left->right->right; // Node 14
Node* res = LCA(root, n1, n2);
cout << res->data << endl;
return 0;
}
C
// C program to find LCA of given node in BST
// Using Properties of BST and Iteration
#include <stdio.h>
#include <stdlib.h>
// Definition of Node structure
typedef struct Node {
int data;
struct Node* left;
struct Node* right;
} Node;
// Function to create a new node
Node* createNode(int val) {
Node* newNode = (Node*)malloc(sizeof(Node));
newNode->data = val;
newNode->left = newNode->right = NULL;
return newNode;
}
// Function to find LCA of n1 and n2, assuming
// that both nodes n1 and n2 are present in BST
Node* LCA(Node* root, Node* n1, Node* n2) {
while (root != NULL) {
// If both n1 and n2 are smaller than root,
// then LCA lies in left
if (root->data > n1->data && root->data > n2->data)
root = root->left;
// If both n1 and n2 are greater than root,
// then LCA lies in right
else if (root->data < n1->data && root->data < n2->data)
root = root->right;
// Else Ancestor is found
else
break;
}
return root;
}
int main() {
// Representation of input BST:
// 20
// / \
// 8 22
// / \
// 4 12
// / \
// 10 14
Node* root = createNode(20);
root->left = createNode(8);
root->right = createNode(22);
root->left->left = createNode(4);
root->left->right = createNode(12);
root->left->right->left = createNode(10);
root->left->right->right = createNode(14);
Node* n1 = root->left->left; // Node 4
Node* n2 = root->left->right->right; // Node 14
Node* res = LCA(root, n1, n2);
printf("%d\n", res->data);
return 0;
}
Java
// Java program to find LCA of given node in BST
// Using Properties of BST and Iteration
class Node {
int data;
Node left, right;
Node(int val) {
data = val;
left = right = null;
}
}
class GfG {
// Function to find LCA of n1 and n2, assuming
// that both nodes n1 and n2 are present in BST
static Node LCA(Node root, Node n1, Node n2) {
while (root != null) {
// If both n1 and n2 are smaller than root,
// then LCA lies in left
if (root.data > n1.data && root.data > n2.data)
root = root.left;
// If both n1 and n2 are greater than root,
// then LCA lies in right
else if (root.data < n1.data && root.data < n2.data)
root = root.right;
// Else Ancestor is found
else
break;
}
return root;
}
public static void main(String[] args) {
// Representation of input BST:
// 20
// / \
// 8 22
// / \
// 4 12
// / \
// 10 14
Node root = new Node(20);
root.left = new Node(8);
root.right = new Node(22);
root.left.left = new Node(4);
root.left.right = new Node(12);
root.left.right.left = new Node(10);
root.left.right.right = new Node(14);
Node n1 = root.left.left; // Node 4
Node n2 = root.left.right.right; // Node 14
Node res = LCA(root, n1, n2);
System.out.println(res.data);
}
}
Python
# C++ program to find LCA of given node in BST
# Using Properties of BST and Iteration
class Node:
def __init__(self, data):
self.data = data
self.left = None
self.right = None
# Function to find LCA of n1 and n2, assuming
# that both nodes n1 and n2 are present in BST
def LCA(root, n1, n2):
while root:
# If both n1 and n2 are smaller than root,
# then LCA lies in left
if root.data > n1.data and root.data > n2.data:
root = root.left
# If both n1 and n2 are greater than root,
# then LCA lies in right
elif root.data < n1.data and root.data < n2.data:
root = root.right
# Else Ancestor is found
else:
break
return root
if __name__ == "__main__":
# Representation of input BST:
# 20
# / \
# 8 22
# / \
# 4 12
# / \
# 10 14
root = Node(20)
root.left = Node(8)
root.right = Node(22)
root.left.left = Node(4)
root.left.right = Node(12)
root.left.right.left = Node(10)
root.left.right.right = Node(14)
n1 = root.left.left # Node 4
n2 = root.left.right.right # Node 14
res = LCA(root, n1, n2)
print(res.data)
C#
// C# program to find LCA of given node in BST
// Using Properties of BST and Iteration
using System;
class Node {
public int data;
public Node left, right;
public Node(int val) {
data = val;
left = right = null;
}
}
class GfG {
// Function to find LCA of n1 and n2, assuming
// that both nodes n1 and n2 are present in BST
static Node LCA(Node root, Node n1, Node n2) {
while (root != null) {
// If both n1 and n2 are smaller than root,
// then LCA lies in left
if (root.data > n1.data && root.data > n2.data)
root = root.left;
// If both n1 and n2 are greater than root,
// then LCA lies in right
else if (root.data < n1.data && root.data < n2.data)
root = root.right;
// Else Ancestor is found
else
break;
}
return root;
}
static void Main(string[] args) {
// Representation of input BST:
// 20
// / \
// 8 22
// / \
// 4 12
// / \
// 10 14
Node root = new Node(20);
root.left = new Node(8);
root.right = new Node(22);
root.left.left = new Node(4);
root.left.right = new Node(12);
root.left.right.left = new Node(10);
root.left.right.right = new Node(14);
Node n1 = root.left.left; // Node 4
Node n2 = root.left.right.right; // Node 14
Node res = LCA(root, n1, n2);
Console.WriteLine(res.data);
}
}
JavaScript
// JavaScript program to find LCA of given node in BST
// Using Properties of BST and Iteration
class Node {
constructor(data) {
this.data = data;
this.left = null;
this.right = null;
}
}
// Function to find LCA of n1 and n2, assuming
// that both nodes n1 and n2 are present in BST
function LCA(root, n1, n2) {
while (root !== null) {
// If both n1 and n2 are smaller than root,
// then LCA lies in left
if (root.data > n1.data && root.data > n2.data)
root = root.left;
// If both n1 and n2 are greater than root,
// then LCA lies in right
else if (root.data < n1.data && root.data < n2.data)
root = root.right;
// Else Ancestor is found
else
break;
}
return root;
}
// Representation of input BST:
// 20
// / \
// 8 22
// / \
// 4 12
// / \
// 10 14
const root = new Node(20);
root.left = new Node(8);
root.right = new Node(22);
root.left.left = new Node(4);
root.left.right = new Node(12);
root.left.right.left = new Node(10);
root.left.right.right = new Node(14);
const n1 = root.left.left; // Node 4
const n2 = root.left.right.right; // Node 14
const res = LCA(root, n1, n2);
console.log(res.data);
How to handle cases when key(s) not present?
In a BST, we can search a key in O(h) time. So we can first explicitly search the keys and then do find LCA using the above method and still have time complexity as O(h).
Related Articles:
Lowest Common Ancestor in a Binary Tree, LCA using Parent Pointer, Find LCA in Binary Tree using RMQ
Similar Reads
Binary Search Tree A Binary Search Tree (or BST) is a data structure used in computer science for organizing and storing data in a sorted manner. Each node in a Binary Search Tree has at most two children, a left child and a right child, with the left child containing values less than the parent node and the right chi
3 min read
Introduction to Binary Search Tree Binary Search Tree is a data structure used in computer science for organizing and storing data in a sorted manner. Binary search tree follows all properties of binary tree and for every nodes, its left subtree contains values less than the node and the right subtree contains values greater than the
3 min read
Applications of BST Binary Search Tree (BST) is a data structure that is commonly used to implement efficient searching, insertion, and deletion operations along with maintaining sorted sequence of data. Please remember the following properties of BSTs before moving forward.The left subtree of a node contains only node
3 min read
Applications, Advantages and Disadvantages of Binary Search Tree A Binary Search Tree (BST) is a data structure used to storing data in a sorted manner. Each node in a Binary Search Tree has at most two children, a left child and a right child, with the left child containing values less than the parent node and the right child containing values greater than the p
2 min read
Insertion in Binary Search Tree (BST) Given a BST, the task is to insert a new node in this BST.Example: How to Insert a value in a Binary Search Tree:A new key is always inserted at the leaf by maintaining the property of the binary search tree. We start searching for a key from the root until we hit a leaf node. Once a leaf node is fo
15 min read
Searching in Binary Search Tree (BST) Given a BST, the task is to search a node in this BST. For searching a value in BST, consider it as a sorted array. Now we can easily perform search operation in BST using Binary Search Algorithm. Input: Root of the below BST Output: TrueExplanation: 8 is present in the BST as right child of rootInp
7 min read
Deletion in Binary Search Tree (BST) Given a BST, the task is to delete a node in this BST, which can be broken down into 3 scenarios:Case 1. Delete a Leaf Node in BSTDeletion in BSTCase 2. Delete a Node with Single Child in BSTDeleting a single child node is also simple in BST. Copy the child to the node and delete the node. Deletion
10 min read
Binary Search Tree (BST) Traversals â Inorder, Preorder, Post Order Given a Binary Search Tree, The task is to print the elements in inorder, preorder, and postorder traversal of the Binary Search Tree. Input: A Binary Search TreeOutput: Inorder Traversal: 10 20 30 100 150 200 300Preorder Traversal: 100 20 10 30 200 150 300Postorder Traversal: 10 30 20 150 300 200 1
10 min read
Balance a Binary Search Tree Given a BST (Binary Search Tree) that may be unbalanced, the task is to convert it into a balanced BST that has the minimum possible height.Examples: Input: Output: Explanation: The above unbalanced BST is converted to balanced with the minimum possible height.Input: Output: Explanation: The above u
10 min read
Self-Balancing Binary Search Trees Self-Balancing Binary Search Trees are height-balanced binary search trees that automatically keep the height as small as possible when insertion and deletion operations are performed on the tree. The height is typically maintained in order of logN so that all operations take O(logN) time on average
4 min read