# R program to illustrate
# Mann Whitney U Test
# Creating a small dataset
# Creating a vector of red bulb and orange prices
red_bulb <- c(38.9, 61.2, 73.3, 21.8, 63.4, 64.6, 48.4, 48.8)
orange_bulb <- c(47.8, 60, 63.4, 76, 89.4, 67.3, 61.3, 62.4)
# Passing them in the columns
BULB_PRICE = c(red_bulb, orange_bulb)
BULB_TYPE = rep(c("red", "orange"), each = 8)
# Now creating a dataframe
DATASET <- data.frame(BULB_TYPE, BULB_PRICE, stringsAsFactors = TRUE)
# printing the dataframe
DATASET
# installing libraries to view summaries and
# boxplot of both orange and red color bulbs
install.packages("dplyr")
install.packages("ggpubr")
# Summary of the data
# loading the package
library(dplyr)
group_by(DATASET,BULB_TYPE) %>%
summarise(
count = n(),
median = median(BULB_PRICE, na.rm = TRUE),
IQR = IQR(BULB_PRICE, na.rm = TRUE))
# loading package for boxplot
library("ggpubr")
ggboxplot(DATASET, x = "BULB_TYPE", y = "BULB_PRICE",
color = "BULB_TYPE", palette = c("#FFA500", "#FF0000"),
ylab = "BULB_PRICES", xlab = "BULB_TYPES")
res <- wilcox.test(BULB_PRICE~ BULB_TYPE,
data = DATASET,
exact = FALSE)
res