Class 11 RD Sharma Solutions - Chapter 29 Limits - Exercise 29.11
Last Updated :
06 Sep, 2024
Evaluate the following limits:
Question 1. \lim_{n\to\infty} \left(1+\frac{x}{n}\right)^n
Solution:
We know if \lim_{x\to{a}}f(x)=\lim_{x\to{a}}g(x)=0 such that \lim_{x\to{a}}\frac{f(x)}{g(x)} exists, then \lim_{x\to{a}}(1+f(x))^\frac{1}{g(x)}=e^{\lim_{x\to{a}}\frac{f(x)}{g(x)}}
We have,
= \lim_{n\to\infty} \left(1+\frac{x}{n}\right)^n
= e^{\lim_{n\to\infty}(\frac{x}{n})n}
= ex
Question 2. \lim_{x\to0^+}\left(1+tan^2\sqrt{x}\right)^\frac{1}{2x}
Solution:
We have,
= \lim_{x\to0^+}\left(1+tan^2\sqrt{x}\right)^\frac{1}{2x}
= e^{\lim_{x\to0^+}(\frac{tan^2\sqrt{x}}{2x})}
= e^{\lim_{x\to0^+}\left(\frac{sin^2\sqrt{x}}{2xcos^2\sqrt{x}}\right)}
= e^{\lim_{x\to0^+}\frac{1}{2}\left(\frac{sin\sqrt{x}}{\sqrt{x}}\right)^2\lim_{x\to0^+}\left(\frac{1}{cos^2\sqrt{x}}\right)}
= e^{\frac{1}{2}}
= \sqrt{e}
Question 3. \lim_{x\to0}\left(cosx\right)^\frac{1}{sinx}
Solution:
We have,
= \lim_{x\to0}\left(cosx\right)^\frac{1}{sinx}
= \lim_{x\to0}\left(1+cosx-1\right)^\frac{1}{sinx}
= \lim_{x\to0}\left(1-(1-cosx)\right)^\frac{1}{sinx}
= \lim_{x\to0}\left(1-2sin^2\frac{x}{2}\right)^\frac{1}{sinx}
= e^{\lim_{x\to0}\left(\frac{-2sin^2\frac{x}{2}}{sinx}\right)}
= e^{\lim_{x\to0}\left(\frac{-2sin^2\frac{x}{2}}{2sin\frac{x}{2}cos\frac{x}{2}}\right)}
= e^{\lim_{x\to0}\left(\frac{-2sin\frac{x}{2}}{cos\frac{x}{2}}\right)}
= e^{\lim_{x\to0}\left(-2tan\frac{x}{2}\right)}
= e^{\lim_{x\to0}\left(-tanx\right)}
= e0
= 1
Question 4. \lim_{x\to0}\left(cosx+sinx\right)^\frac{1}{x}
Solution:
We have,
= \lim_{x\to0}\left(cosx+sinx\right)^\frac{1}{x}
= \lim_{x\to0}\left(1+(cosx+sinx-1)\right)^\frac{1}{x}
= e^{\lim_{x\to0}\left(\frac{cosx+sinx-1}{x}\right)}
= e^{\lim_{x\to0}\left(\frac{sinx-(1-cosx)}{x}\right)}
= e^{\lim_{x\to0}\left(\frac{sinx-2sin^2\frac{x}{2}}{x}\right)}
= e^{\lim_{x\to0}\left(\frac{sinx}{x}\right)-\lim_{x\to0}\left(\frac{2sin^2\frac{x}{2}}{2(\frac{x}{2})}\right)}
= e^{\lim_{x\to0}\left(\frac{sinx}{x}\right)-\lim_{x\to0}\left(\frac{sin\frac{x}{2}sin\frac{x}{2}}{\frac{x}{2}}\right)}
= e1−0
= e
Question 5. \lim_{x\to0}\left(cosx+asinbx\right)^\frac{1}{x}
Solution:
We have,
= \lim_{x\to0}\left(cosx+asinbx\right)^\frac{1}{x}
= \lim_{x\to0}\left(1+(cosx+asinbx-1)\right)^\frac{1}{x}
= e^{\lim_{x\to0}\left(\frac{cosx+asinbx-1}{x}\right)}
= e^{\lim_{x\to0}\left(\frac{asinbx-(1-cosx)}{x}\right)}
= e^{\lim_{x\to0}\left(\frac{asinbx-2sin^2\frac{x}{2}}{x}\right)}
= e^{\lim_{x\to0}\left(\frac{absinx}{bx}\right)-\lim_{x\to0}\left(\frac{2sin^2\frac{x}{2}}{2(\frac{x}{2})}\right)}
= e^{\lim_{x\to0}\left(\frac{absinx}{bx}\right)-\lim_{x\to0}\left(\frac{sin\frac{x}{2}sin\frac{x}{2}}{\frac{x}{2}}\right)}
= eab−0
= eab
Question 6. \lim_{x\to\infty}\left(\frac{x^2+2x+3}{2x^2+x+5}\right)^{\frac{3x-2}{3x+2}}
Solution:
We have,
= \lim_{x\to\infty}\left(\frac{x^2+2x+3}{2x^2+x+5}\right)^{\frac{3x-2}{3x+2}}
= e^{\lim_{x\to\infty}\left[\left(\frac{3x-2}{3x+2}\right)ln\left(\frac{x^2+2x+3}{2x^2+x+5}\right)\right]}
= e^{\lim_{x\to\infty}\left[\left(\frac{3-\frac{2}{x}}{3+\frac{2}{x}}\right)ln\left(\frac{1+\frac{2}{x}+\frac{3}{x^2}}{2+\frac{1}{x}+\frac{5}{x^2}}\right)\right]}
= e^{1.ln(\frac{1}{2})}
= \frac{1}{2}
Question 7. \lim_{x\to1}\left(\frac{x^3+2x^2+x+1}{x^2+2x+3}\right)^{\frac{1-cos(x-1)}{(x-1)^2}}
Solution:
We have,
= \lim_{x\to1}\left(\frac{x^3+2x^2+x+1}{x^2+2x+3}\right)^{\frac{1-cos(x-1)}{(x-1)^2}}
= e^{\lim_{x\to1}\left[{\frac{1-cos(x-1)}{(x-1)^2}}ln\left(\frac{x^3+2x^2+x+1}{x^2+2x+3}\right)\right]}
= e^{\lim_{x\to1}\left[{\frac{2sin^2(\frac{x-1}{2})}{4\left(\frac{x-1}{2}\right)^2}}ln\left(\frac{x^3+2x^2+x+1}{x^2+2x+3}\right)\right]}
= e^{\frac{2}{4}ln(\frac{5}{6})}
= e^{ln(\frac{5}{6})^{\frac{1}{2}}}
= (\frac{5}{6})^{\frac{1}{2}}
Question 8. \lim_{x\to0}\left[\frac{e^x+e^{-x}-2}{x^2}\right]^{\frac{1}{x^2}}
Solution:
We have,
= \lim_{x\to0}\left[\frac{e^x+e^{-x}-2}{x^2}\right]^{\frac{1}{x^2}}
= e^{\lim_{x\to0}\left[\frac{\frac{e^x+e^{-x}-2}{x^2}}{x^2}\right]}
Applying L'Hospital's Rule, we get,
= e^{\lim_{x\to0}\left(\frac{2+e^x(-2+x)+x}{2(-1+e^x)x^2}\right)}
= e^{\frac{1}{2}\lim_{x\to0}\left(\frac{1+e^x(-1+x)}{x(-2+e^x(2+x))}\right)}
= e^{\frac{1}{2}\lim_{x\to0}\left(\frac{xe^x}{-2+e^x(2+4x+x^2)}\right)}
= e^{\frac{1}{2}\lim_{x\to0}\left(\frac{1+x}{6+6x+x^2}\right)}
= e^{\frac{1}{12}}
Question 9. \lim_{x\to{a}}\left[\frac{sinx}{sina}\right]^{\frac{1}{x-a}}
Solution:
We have,
= \lim_{x\to{a}}\left[\frac{sinx}{sina}\right]^{\frac{1}{x-a}}
= \lim_{x\to{a}}\left[1+(\frac{sinx}{sina}-1)\right]^{\frac{1}{x-a}}
= e^{\lim_{x\to{a}}\left(\frac{(\frac{sinx}{sina}-1)}{x-a}\right)}
= e^{\lim_{x\to{a}}\frac{(\frac{sinx-sina}{sina})}{x-a}}
= e^{\lim_{x\to{a}}\left(\frac{sinx-sina}{sina(x-a)}\right)}
= e^{\lim_{x\to{a}}\left(\frac{2cos(\frac{x+a}{2})sin(\frac{x-a}{2})}{sina(x-a)}\right)}
= e^{\lim_{x\to{a}}\left(\frac{2cos(\frac{x+a}{2})}{sina}\right)lim_{x\to{a}}\left(\frac{sin(\frac{x-a}{2})}{2(\frac{x-a}{2})}\right)}
= e^{\frac{2cosa}{2sina}}
= ecot a
Question 10. \lim_{x\to\infty}\left(\frac{3x^2+1}{4x^2-1}\right)^{\frac{x^3}{1+x}}
Solution:
We have,
= \lim_{x\to\infty}\left(\frac{3x^2+1}{4x^2-1}\right)^{\frac{x^3}{1+x}}
= \lim_{x\to\infty}\left(1+\frac{-x^2+2}{4x^2-1}\right)^{\frac{x^3}{1+x}}
= e^{\lim_{x\to\infty}\left[(\frac{-x^2+2}{4x^2-1}){(\frac{x^3}{1+x}})\right]}
= e^{\lim_{x\to\infty}\left(\frac{-x^5+2x^3}{4x^2-1+4x^3-x}\right)}
= e−∞
= 1/e∞
= 0
Summary
Exercise 29.11 covers evaluating limits of various functions, including algebraic, trigonometric, and exponential functions. Students learn to apply limit rules and techniques, such as the product rule, quotient rule, and chain rule. Limits measure the behavior of functions as the input changes. Understanding limits is crucial for calculus and its applications. Practice questions reinforce learning and application. Limits help model real-world phenomena and make predictions.
Explore
Basic Arithmetic
Algebra
Geometry
Trigonometry & Vector Algebra
Calculus
Probability and Statistics
Practice