Question 1. Differentiate each of the following using first principles:
(i) 2/x
Solution:
Given that f(x) = 2/x
By using the formula
f'(x) = \lim_{h\to 0}\frac{f(x+h)-f(x)}{h}
We get
= \lim_{h\to 0}\frac{\frac{2}{x+h}-\frac{2}{x}}{h}
= \lim_{h\to 0}\frac{2x-2x-2h}{hx(x+h)}
= \lim_{h\to 0}\frac{2(-h)}{hx(x+h)}
= \lim_{h\to 0}\frac{-2}{x(x+h)}
= \frac{-2}{x^2}
(ii) 1/√x
Solution:
Given that f(x) = 1/√x
By using the formula
f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}
We get
= \lim_{h\to 0}\frac{\frac{1}{\sqrt(x+h)}-\frac{1}{\sqrt{x}}}{h}
= \lim_{h\to 0}\frac{\sqrt{x}-\sqrt{x+h}}{\sqrt{x}\sqrt{x+h}.h}
= \lim_{h\to 0}\frac{\sqrt{x}-\sqrt{x+h}}{\sqrt{x}\sqrt{x+h}.h}\frac{\sqrt{x}+\sqrt{x+h}}{\sqrt{x}\sqrt{x+h}.h}
= \lim_{h\to 0}\frac{x-(x+h)}{\sqrt{x}\sqrt{x+h}.h(\sqrt{x}+\sqrt{x+h})}
= \lim_{h\to 0}\frac{-h}{\sqrt{x}\sqrt{x+h}.h(\sqrt{x}+\sqrt{x+h})}
= \lim_{h\to 0}\frac{-1}{x\sqrt{x+h}+\sqrt{x}(\sqrt{x+h})}
= \lim_{h\to 0}\frac{-1}{2x\sqrt{x}}
= \frac{-1}{2}x^{-\frac{3}{2}}
(iii) 1/x3
Solution:
We have f(x) = 1/x3
By using the formula
f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}
We get
= \lim_{h\to 0}\frac{\frac{1}{(x+h)^3}-\frac{1}{x^3}}{h}
= \lim_{h\to 0}\frac{x^3-(x^3+3x^2h+3xh^2+h^3)}{x^3h(x+h)^3}
= \lim_{h\to 0}\frac{x^3-x^3-3x^2-3xh-h^2}{x^3(x+h)^3}
= \lim_{h\to 0}\frac{-3x^2-3xh-h^2}{x^3(x+h)^3}
= \frac{-3x^2}{x^6}
= \frac{-3}{x^4}
(iv) (x2 + 1)/x
Solution:
Given that f(x) = (x2 + 1)/x
By using the formula
f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}
We get
= \lim_{h\to 0}\frac{\frac{(x+h)^2+1}{(x+h)}-\frac{x^2+1}{x}}{h}
= \lim_{h\to 0}\frac{x[x^2+h^2+2xh+1]-(x^2+1)(x+h)}{hx(x+h)}
= \lim_{h\to 0}\frac{x^3+xh^2+2x^2h+x-x^3-x-x^2h-h}{hx(x+h)}
= \lim_{h\to 0}\frac{xh+2x^2-x^2-1}{x(x+h)}
= \frac{x^2-1}{x^2}
= 1-\frac{1}{x^2}
(v) (x2 - 1)/x
Solution:
Given that f(x) = (x2 - 1)/x
By using the formula
f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}
We get
= \lim_{h\to 0}\frac{\frac{(x+h)^2-1}{(x+h)}-\frac{x^2-1}{x}}{h}
= \lim_{h\to 0}\frac{x[x^2+h^2+2xh-1]-(x^2-1)(x+h)}{hx(x+h)}
= \lim_{h\to 0}\frac{xh+2x^2-x^2+1}{x(x+h)}
= \frac{x^2+1}{x^2}
= 1+\frac{1}{x^2}
(vi) (x + 1)/(x + 2)
Solution:
Given that f(x) = (x + 1)/(x + 2)
By using the formula
f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}
We get
= \lim_{h\to 0}\frac{\frac{(x+h)+1}{(x+h)+2}-\frac{x+1}{x+2}}{h}
= \lim_{h\to 0}\frac{(x^2+2x+xh+2h+2+x)-(x^2+xh+2x+x+h+2)}{h(x+2)(x+h+2)}
= \lim_{h\to 0}\frac{h}{h(x+2)(x+h+2)}
= 1/(x + 2)2
(vii) (x + 2)/(3x + 5)
Solution:
Given that f(x) = (x + 2)/(3x + 5)
By using the formula
f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}
We get
= \lim_{h\to 0}\frac{\frac{(x+h+2)}{3(x+h)+5}-\frac{x+2}{3x+5}}{h}
= \lim_{h\to 0}\frac{(3x+5)(x+h+2)-(x+2)(3x+3h+5)}{h(3x+5)(3x+3h+5)}
= \lim_{h\to 0}\frac{(3x^2+5x+3xh+5h+6x+10)-(3x^2+3xh+5x+6x+6h+10)}{h(3x+5)(3x+3h+5)}
= \lim_{h\to 0}\frac{-h}{h(3x+5)(3x+3h+5)}
= \lim_{h\to 0}\frac{-1}{(3x+5)(3x+3h+5)}
= \frac{-1}{(3x+5)^2}
(viii) kxn
Solution:
Given that f(x) = kxn
By using the formula
f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}
We get
= \lim_{h\to 0}\frac{k(x+h)^n-kx^n}{h}
= k\lim_{h\to 0}\frac{(x^n+nx^{n-1}+\frac{n(n-1)}{2}x^{n-2}h^2+...)-x^n}{h}
= k\lim_{h\to 0}nx^{n-1}+\frac{n(n-1)}{2!}x^{n-2}h+\frac{n(n-1(n-2)}{3!}x^{n-3}h^2......
= k nxn-1+ 0 + 0 ...
= k nxn-1
(ix) 1/√(3 - x)
Solution:
Given that f(x) = 1/√(3-x)
By using the formula
f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}
We get
= \lim_{h\to 0}\frac{\frac{1}{\sqrt{3-(x+h)}}-\frac{1}{\sqrt{3-x}}}{h}
= \lim_{h\to 0}\frac{\sqrt{3-x}-\sqrt{3-(x+h)}}{\sqrt{3-x}\sqrt{3-(x+h)}h}
= \lim_{h\to 0}\frac{\sqrt{3-x}-\sqrt{3-(x+h)}}{\sqrt{3-x}\sqrt{3-(x+h)}h}\frac{\sqrt{3-x}+\sqrt{3-(x+h)}}{\sqrt{3-x}+\sqrt{3-(x+h)}h}
= \lim_{h\to 0}\frac{(3-x)-(3-(x+h))}{\sqrt{3-x}\sqrt{3-(x+h)}h\sqrt{3-x}+\sqrt{3-(x+h)}}
= \lim_{h\to 0}\frac{h}{\sqrt{3-x}\sqrt{3-(x+h)}h(\sqrt{3-x}+\sqrt{3-(x+h))}}
= \frac{1}{(3-x)2\sqrt{3-x}}
= \frac{1}{2(3-x)^{3/2}}
(x) x2 + x + 3
Solution:
Given that f(x) = x2 + x + 3
By using the formula
f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}
We get
= \lim_{h\to 0}\frac{[(x+h)^2+(x+h)+3]-x^2+x+3}{h}
= \lim_{h\to 0}\frac{x^2+h^2+2hx+x+h+3-x^2-x-3}{h}
= \lim_{h\to 0}\frac{2xh+h^2+h}{h}
= \lim_{h\to 0}\frac{h(2x+h+1)}{h}
= 2x + 0 + 1
= 2x + 1
(xi) (x + 2)3
Solution:
Given that f(x) = (x + 2)3
By using the formula
f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}
We get
= \lim_{h\to 0}\frac{(x+h+2)^3-(x+2)^3}{h}
= \lim_{h\to 0}\frac{[(x+2)+h]^3-(x+2)^3}{h}
= \lim_{h\to 0}\frac{(x+2)^3+h^3+3h(x+2)^2+3(x+2)h^2-(x+2)^3}{h}
= \lim_{h\to 0}3(x+2)^2+3(x+2)h+h^2
= 3(x + 2)2
(xii) x3 + 4x2 + 3x + 2
Solution:
Given that f(x) = x3 + 4x2 + 3x + 2
By using the formula
f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}
We get
= \lim_{h\to 0}\frac{(x+h)^3+4(x+h)^2+3(x+h)+2-(x^3+4x^2+3x+2)}{h}
= \lim_{h\to 0}\frac{x^3+h^3+3x^2h+3h^2x+4x^2+4h^2+8hx+3x+3h+2-x^3-4x^2-3x-2}{h}
= \lim_{h\to 0}\frac{3x^2h+3h^2x+h^3+4h^2+8hx+3h}{h}
= \lim_{h\to 0}3x^2+3hx+h^2+4h+8x+3
= 3x2 + 8x + 3
(xiii) (x2 + 1)(x - 5)
Solution:
Given that f(x) = (x2+1)(x-5)
By using the formula
f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}
We get
= \lim_{h\to 0}\frac{[(x+h)^3+(x+h)-5(x+h^2)-5]-(x^3-5x^2+x-5)}{h}
= \lim_{h\to 0}\frac{(x^3+h^3+3x^2h+3h^2x+x+h-5x^2-5h^3-10xh-5)-(x^3-5x^2+x-5)}{h}
= \lim_{h\to 0}\frac{(3x^2h+3h^2x+h^3+h-5h^2-10xh)}{h}
= \lim_{h\to 0}3x^2+3hx+h^2+1-5h-10x
= 3x2 - 10x + 1
(xiv) √(2x2 + 1)
Solution:
Given that f(x) = √(2x2 + 1)
By using the formula
f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}
We get
= \lim_{h\to 0}\frac{\sqrt{2(x+h)^2+1}-\sqrt{2x^2+1}}{h}
On multiplying numerator and denominator by {\sqrt{2(x+h)^2+1}+\sqrt{2x^2+1}}
We get
= \lim_{h\to 0}\frac{[2(x+h)^2+1-(2x^2+1)]}{h(\sqrt{2(x+h)^2+1}+\sqrt{2x^2+1})}
= \lim_{h\to 0}\frac{2x^2+2h^2+4xh+1-2x^2-1}{h(\sqrt{2(x+h)^2+1}+\sqrt{2x^2+1})}
= \lim_{h\to 0}\frac{4xh+2h^2}{h\sqrt{2(x+h)^2+1}+\sqrt{2x^2+1}}
= \frac{4x}{2\sqrt{2x^2+1}}
= \frac{2x}{\sqrt{2x^2+1}}
(xv) (2x + 3)/(x - 2)
Solution:
Given that f(x) = (2x + 3)/(x - 2)
By using the formula
f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}
We get
= \lim_{h\to 0}\frac{\frac{2x+2h+3}{x+h-2}-\frac{2x+3}{2-x}}{h}
= \lim_{h\to 0}\frac{2x^2+2hx+3x-4x-4h-6-2x^2-2hx+4x-3x-3h+6}{h(x+h-2)(x-2)}
= \lim_{h\to 0}\frac{-7}{(x+h-2)(x-2)}
= \frac{-7}{(x-2)^2}
Question 2. Differentiate each of the following using first principles:
(i) e-x
Solution:
Given that f(x) = e-x
By using the formula
f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}
We get
= f'(x)=\lim_{h\to 0}\frac{e^{-(x+h)-e^{-x}}}{h}
= f'(x)=\lim_{h\to 0}\frac{e^{-x}(e^{-h}-1)}{h}
= f'(x)=\lim_{h\to 0}\frac{-e^{-x}(e^{-h}-1)}{-h}
= -e-x
(ii) e3x
Solution:
Given that f(x) = e3x
By using the formula
f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}
We get
= \lim_{h\to 0}\frac{e^{3(x+h)}-e^{3x}}{h}
= \lim_{h\to 0}\frac{e^{3x}e^{3h}-e^{3x}}{h}
= \lim_{h\to 0}\frac{e^{3x}(e^{3h-1})}{h}
Multiplying numerator and denominator by 3.
= \lim_{h\to 0}e^{3x}\frac{(e^{3h-1})}{3h}
Here, \lim_{h\to 0}\frac{e^{3h-1}}{3h}=1
= 3e3x
(iii) eax+b
Solution:
Given that f(x) = eax+b
By using the formula
f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}
We get
= \lim_{h\to 0}\frac{e^{x(x+h)+b}-e^{ax+b}}{h}
= \lim_{h\to 0}\frac{e^{ax}e^{ah}e^b-e^{ax}e^b}{h}
= \lim_{h\to 0}\frac{e^be^{ax}(e^{ah}-1)}{h}
= lim_{h\to 0}e^{(ax+b)}\frac{a(e^{ah}-1)}{a.h}
On multiplying numerator and denominator by a
Since \lim_{h\to 0}\frac{(e^{ah}-1)}{ah}=1
= aeax+b
(iv) xex
Solution:
Given that f(x) = xex
By using the formula
f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}
We get
= \lim_{h\to 0}\frac{(x+h)e^{x+h}-xe^x}{h}
= \lim_{h\to 0}\frac{xe^xe^h+he^xe^h-xe^x}{h}
= \lim_{h\to 0}xe^x(\frac{e^h-1}{h})+\frac{he^{x+h}}{h}
= xex + ex
= ex(x + 1)
(v) x2 ex
Solution:
Given that f(x) = x2ex
By using the formula
f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}
We get
= \lim_{h\to 0}\frac{x^2e^xe^h+h^2e^xe^h+2xhe^h-x^2e^x}{h}
= \lim_{h\to 0}x^2e^x\frac{(e^h-1)}{h}+e^xe^h\frac{(h^2+2xh)}{h}
= x2ex + ex(0 + 2x)
= x2ex + 2xex
= ex(x2 + 2x)
(vi) e^{(x^2+1)}
Given that f(x) = e^{(x^2+1)}
By using the formula
f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}
We get
= \lim_{h\to 0}\frac{e^{(x+h)^2}+1-e^{x^2+1}}{h}
= \lim_{h\to 0}\frac{e^{x^2+h^2+2xh+1}-e^{x^2+1}}{h}
= \lim_{h\to 0}\frac{e^{x^2+1}(e^{2xh}e^{h^2}-1)}{h}
= \lim_{h\to 0}\frac{e^{x^2+1}(e^{2xh+h^2}-1)}{2xh+h^2}×\frac{2xh+h^2}{h}
= \lim_{h\to 0}e^{x^2+1}.1×2x+h
= 2xe^{x^2+1}
(vii) e√(2x)
Solution:
Given that f(x) = e^{\sqrt{2x}}
By using the formula
f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}
We get
= \lim_{h\to 0}\frac{e^{\sqrt{2(x+h)}}-e^{\sqrt{2x}}}{h}
= \lim_{h\to 0}\frac{e^{\sqrt{2x}}(e^{\sqrt{2(x+h)}-\sqrt{2x}}-1)}{h}
= \lim_{h\to 0}e^{\sqrt{2x}}\frac{(e^{\sqrt{2(x+h)}-\sqrt{2x}}-1)}{\sqrt{2(x+h)}-\sqrt{2x}}\frac{\sqrt{2(x+h)}-\sqrt{2x}}{h}
On multiplying numerator and denominator by \sqrt{2(x+h)}-\sqrt{2x}
we get
= \lim_{h\to 0}e^{\sqrt{2x}}\frac{{\sqrt{2(x+h)}-\sqrt{2x}}}{h}
Again multiplying numerator and denominator by \sqrt{2(x+h)}+\sqrt{2x}
we get
= \lim_{h\to 0}e^{\sqrt{2x}}\frac{{\sqrt{2(x+h)}-\sqrt{2x}}}{h}×\frac{\sqrt{2(x+h)}+\sqrt{2x}}{\sqrt{2(x+h)}+\sqrt{2x}}
= e^{\sqrt{2x}}×\frac{1}{2\sqrt{2x}}
(viii) e√(ax + b)
Solution:
Given that f(x) = e√(ax+b)
By using the formula
f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}
We get
= \lim_{h\to 0}\frac{e^{\sqrt{a(x+h)+b}}-e^{\sqrt{ax+b}}}{h}
= \lim_{h\to 0}e^{\sqrt{a(x+h)+b}}\frac{(e^{\sqrt{a(x+h)+b}-{\sqrt{ax+b}}}-1)}{h}
= \lim_{h\to 0}e^{\sqrt{ax+b}}\frac{e^{\sqrt{a(x+h)+b}-{\sqrt{ax+b}}}-1}{\sqrt{a(x+h)+b}-\sqrt{ax+b}}\frac{\sqrt{a(x+h)+b}-\sqrt{ax+b}}{h}
On multiplying numerator and denominator by \sqrt{a(x+h)+b}-\sqrt{ax+b}
we get
= \lim_{h\to 0}e^{\sqrt{ax+b}}×1×\frac{{\sqrt{a(x+h)+b}-{\sqrt{ax+b}}}}{\sqrt{a(x+h)+b}+\sqrt{ax+b}}×\frac{\sqrt{a(x+h)+b}+\sqrt{ax+b}}{h}
Again multiplying numerator and denominator by \sqrt{a(x+h)+b}+\sqrt{ax+b}
we get
= \lim_{h\to 0}e^{\sqrt{ax+b}}×\frac{a(x+h)+b-(ax+b)}{h}×\frac{1}{(\sqrt{a(x+h)+b}+\sqrt{ax+b})}
= \frac{e^{\sqrt{ax+b}}×a}{2\sqrt{ax+b}}
= \frac{ae^{\sqrt{ax+b}}}{2\sqrt{ax+b}}
(ix) a√x
Solution:
Given that f(x) = a√x = e√xloga
By using the formula
f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}
We get
= \lim_{h\to 0}\frac{e^{\sqrt{x+h}loga}-e^{\sqrt{x}loga}}{h}
= \lim_{h\to 0}e^{\sqrt{x}loga}\frac{e^{\sqrt{x+h}loga-\sqrt{x}loga}-1}{h}
= \lim_{h\to 0}e^{\sqrt{x}loga}\frac{e^{(\sqrt{x+h}-\sqrt{x})loga}-1}{h}
On multiplying numerator and denominator by (\sqrt{x+h}-\sqrt{x})loga
we get
f''(x) = \lim_{h\to 0}e^{\sqrt{x}loga}\frac{e^{(\sqrt{x+h}-\sqrt{x})loga}-1}{h(\sqrt{x+h}-\sqrt{x})loga}(\sqrt{x+h}-\sqrt{x})loga
= e^{\sqrt{x}loga}\lim_{h\to 0}\frac{e^{(\sqrt{x+h}-\sqrt{x})loga}-1}{(\sqrt{x+h}-\sqrt{x})loga}\lim_{h\to 0}loga\frac{(\sqrt{x+h}-\sqrt{x})}{h}
= e^{\sqrt{x}loga}\lim_{h\to 0}loga\frac{(\sqrt{x+h}-\sqrt{x})}{h}
On multiplying numerator and denominator by (\sqrt{x+h}+\sqrt{x})
we get
f'(x) = e^{\sqrt{x}loga}\lim_{h\to 0}loga\frac{(\sqrt{x+h}-\sqrt{x})}{h(\sqrt{x+h}+\sqrt{x})}(\sqrt{x+h}+\sqrt{x})
= e^{\sqrt{x}loga}\lim_{h\to 0}loga\frac{h}{h(\sqrt{x+h}+\sqrt{x})}
= e^{\sqrt{x}loga}\frac{loga}{2\sqrt{x}}
= \frac{a^{\sqrt{x}}}{2\sqrt{x}} logea
(x) 3^{x^2}
Solution:
Given that f(x) = 3^{x^2}=e^{x^2log3}
By using the formula
f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}
We get
= \lim_{h\to 0}\frac{e^{(x+h)^2log3}-e^{x^2log3}}{h}
= \lim_{h\to 0}e^{x^2log3}\frac{[e({(x+h)^2-x^2)^{log3}}-1]}{h}
= \lim_{h\to 0}e^{x^2log3}\frac{[e{(x+h)^2-x^2]^{log3}}-1}{(x+h)^2-x^2}×\frac{(x+h)^2-x^2}{h}
= \lim_{h\to 0}e^{x^2log3}\frac{(x+h+x)(x+h-x)}{h}
= e^{x^2log3} 2x
= 2xe^{x^2log3}
= 2x3^{x^2log3}
Summary
Exercise 30.2 Set 1 covers differentiation of various functions, including polynomials, trigonometric functions, exponential functions, and logarithmic functions. Students learn to apply differentiation rules and formulas to find derivatives. Understanding derivatives is crucial for calculus and its applications. Differentiation helps analyze functions and model real-world phenomena. Practice questions reinforce learning and application. Derivatives measure rates of change, essential for optimization and physics.
Explore
Basic Arithmetic
Algebra
Geometry
Trigonometry & Vector Algebra
Calculus
Probability and Statistics
Practice