Chapter 12 of RD Sharma's Class 12 Mathematics textbook focuses on higher-order derivatives, a crucial concept in calculus. Exercise 12.1 specifically deals with finding higher-order derivatives of various functions, providing a comprehensive set of practice problems to reinforce understanding.
Find the second-order derivative of the following function
Question 1(i). x3 + tanx
Solution:
Let us considered
f(x) = x3 + tanx
On differentiating both sides w.r.t x,
f'(x) = 3x2 + sec2x
Again differentiating both sides w.r.t x,
f''(x) = 6x + 2(secx)(secx.tanx)
f''(x) = 6x + 2sec2x.tanx
Question 1(ii). sin(logx)
Solution:
Let us considered
y = sin(logx)
On differentiating both sides w.r.t x,
(dy/dx) = cos(logx) × (1/x)
(dy/dx) = cos(logx)/x
Again differentiating both sides w.r.t x,
d2y/dx2 = d/dx[cos(logx)/x]
=\frac{x\frac{d}{dx}cos(logx)-cos(logx)\frac{d}{dx}x}{x^2}
= \frac{-x[\frac{sin(logx)}{x}]-cos(logx).1}{x^2}
= -[sin(logx) + cos(logx)]/x2
Question 1(iii). log(sinx)
Solution:
Let us considered
y = log(sinx)
On differentiating both sides w.r.t x,
(dy/dx) = (1/sinx) × (cosx)
(dy/dx) = cotx
Again differentiating both sides w.r.t x,
d2y/dx2 = -cosec2x
Question 1(iv). exsin5x
Solution:
Let us considered
y = exsin5x
On differentiating both sides w.r.t x,
(dy/dx) = exsin5x + 5excos5x
Again differentiating both sides w.r.t x,
d2y/dx2 = exsin5x + 5excos5x + 5(excos5x - 5exsin5x)
d2y/dx2 = -24exsin5x + 10excos5x
d2y/dx2 = 2ex(5cos5x - 12sinx)
Question 1(v). e6xcos3x
Solution:
Let us considered
y = e6xcos3x
On differentiating both sides w.r.t x,
(dy/dx) = 6e6xcos3x - 3e6xsin3x
Again differentiating both sides w.r.t x,
d2y/dx2 = 6(6e6xcos3x - 3e6xsin3x) - 3(6e6xsin3x + 3e6xcos3x)
d2y/dx2 = 36e6xcos3x - 18e6xsin3x - 18e6xsin3x - 9e6xcos3x
d2y/dx2 = 27e6xcos3x - 36e6xsin3x
d2y/dx2 = 9e6x(3cos3x - 4sin3x)
Question 1(vi). x3logx
Solution:
Let us considered
y = x3logx
On differentiating both sides w.r.t x,
(dy/dx) = logx.3x2 + x3(1/x)
(dy/dx) = logx.3x2 + x2
(dy/dx) = x2(1 + 3logx)
Again differentiating both sides w.r.t x,
d2y/dx2 = (1 + 3logx).2x + x2(3/x)
d2y/dx2 = 2x + 6xlogx + 3x
d2y/dx2 = x(5 + 6logx)
Question 1(vii). tan-1x
Solution:
Let us considered
y = tan-1x
On differentiating both sides w.r.t x,
(dy/dx) = 1/(1 + x2)
Again differentiating both sides w.r.t x,
\frac{d^2y}{dx^2}=\frac{d}{dx}(1+x^2)^{-1}
d2y/dx2 = (-1)(1 + x2)-2.2x
\frac{d^2y}{dx^2}=\frac{-2x}{(1+x^2)^2}
Question 1(viii). x.cosx
Solution:
Let us considered
y = x.cosx
On differentiating both sides w.r.t x,
(dy/dx) = cosx + x(-sinx)
(dy/dx) = cosx - xsinx
Again differentiating both sides w.r.t x,
d2y/dx2 = -sinx - (sinx + xcosx)
d2y/dx2 = -2sinx - xcosx
d2y/dx2 = -(xcosx + 2sinx)
Question 1(ix). log(logx)
Solution:
Let us considered
y = log(logx)
On differentiating both sides w.r.t x,
(dy/dx) = (1/logx) × (1/x)
(dy/dx) = 1/xlogx
Again differentiating both sides w.r.t x,
\frac{d^2y}{dx^2}=\frac{d}{dx}(xlogx)^{-1}
d2y/dx2 = (-1)(xlogx)-2.[(d/dx)xlogx]
d2y/dx2 = (-1)(xlogx)-2[logx+x.(1/x)]
d2y/dx2= (-1)(xlogx)-2.(logx+1)
\frac{d^2y}{dx^2}=\frac{-(1+logx)}{(xlogx)^2}
Question 2. If y = e-x.cosx, show that d2y/dx2 = 2e-x.sinx.
Solution:
Let us considered
y = e-x.cosx
On differentiating both sides w.r.t x,
(dy/dx) = -e-x.cosx - e-x.sinx
Again differentiating both sides w.r.t x,
d2y/dx2 = -(-e-x.cosx - e-x.sinx) - (-e-x.sinx + e-x.cosx)
d2y/dx2 = e-x.cosx - e-x.cosx + e-x.sinx + e-x.sinx
d2y/dx2 = 2e-x.sinx
Hence Proved
Question 3. If y = x + tanx, Show that cos2x(d2y/dx2) - 2y + 2x = 0.
Solution:
Let us considered
y = x + tanx
On differentiating both sides w.r.t x,
(dy/dx) = 1 + sec2x
Again differentiating both sides w.r.t x,
d2y/dx2 = 0 + (2secx)(secx.tanx)
d2y/dx2 = 2sec2x.tanx
On multiplying both sides by cos2x
cos2x(d2y/dx2) = 2tanx
cos2x(d2y/dx2) = 2(y - x) [since, tanx = y - x]
cos2x(d2y/dx2) - 2y + 2x = 0
Hence Proved
Question 4. If y = x3logx, prove that (d4y/dx4) = (6/x).
Solution:
Let us considered
y = x3logx
On differentiating both sides w.r.t x,
(dy/dx) = logx.3x2 + x3(1/x)
(dy/dx) = logx.3x2 + x2
(dy/dx) = x2(1 + 3logx)
Again differentiating both sides w.r.t x,
d2y/dx2 = (1 + 3logx).2x + x2(3/x)
d2y/dx2 = 2x + 6xlogx + 3x
d2y/dx2 = 5x + 6xlogx
Again differentiating both sides w.r.t x,
d3y/dx3 = 5 + 6[logx + (x/x)]
d3y/dx3 = 11 + 6logx
Again differentiating both sides w.r.t x,
d4y/dx4 = (6/x)
Hence Proved
Question 5. If y = log(sinx), prove that (d3y/dx3) = 2cosx.cosec3x.
Solution:
Let us considered
y = log(sinx)
On differentiating both sides w.r.t x,
(dy/dx) = (1/sinx) × (cosx)
(dy/dx) = cotx
Again differentiating both sides w.r.t x,
d2y/dx2 = -cosec2x
Again differentiating both sides w.r.t x,
d3y/dx3 = -2cosecx.(-cosesx.cotx)
d3y/dx3 = 2cosec2x.cotx
d3y/dx3 = 2cosec2x.(cosx/sinx)
d3y/dx3 = cosx.cosec3x
Hence Proved
Question 6. If y = 2sinx + 3cosx, show that (d2y/dx2) + y = 0.
Solution:
Let us considered
y = 2sinx + 3cosx
On differentiating both sides w.r.t x,
(dy/dx) = 2cosx - 3sinx
Again differentiating both sides w.r.t x,
d2y/dx2 = -2sinx - 3cosx
d2y/dx2 = -(2sinx + 3cosx)
d2y/dx2 = -y
d2y/dx2 + y = 0
Hence Proved
Question 7. If y = (logx/x), show that (d2y/dx2) = (2logx - 3)/x3
Solution:
Let us considered
y = (logx/x)
On differentiating both sides w.r.t x,
\frac{dy}{dx}=\frac{x\frac{d}{dx}logx-logx\frac{dx}{dx}}{x^2}
(dy/dx) = (1 - logx)/x2
Again differentiating both sides w.r.t x,
\frac{d^2y}{dx^2}=\frac{x^2\frac{d}{dx}(1-logx)-(1-logx)\frac{dx}{dx}}{x^4}
d2y/dx2 = [-x - 2x(1 - logx)]/x4
d2y/dx2 = (2xlogx - 3x)/x4
d2y/dx2 = (2logx - 3)/x3
d2y/dx2 + y = 0
Hence Proved
Question 8. If x = a secθ, y = b tanθ, show that (d2y/dx2) = -b4/a2y3
Solution:
We have,
x = a secθ and y = b tanθ
On differentiating both sides w.r.t θ,
(dx/dθ) = a secθ.tanθ, (dy/dθ) = b sec2θ
(dy/dx) = (dy/dθ) × (dθ/dx)
(dy/dx) = (b sec2θ)/(a secθ.tanθ)
(dy/dx) = (b/a).cosecθ
Again differentiating both sides w.r.t x,
(d2y/dx2) = (b/a).(-cosecθ.cotθ).(dθ/dx)
(d2y/dx2) = -(b/a).(cosecθ.cotθ).(1/a secθ.tanθ)
(d2y/dx2) = - (b/a2).(cotθ).(1/tan2θ)
d2y/dx2 = -(b/a2).(1/tan3θ)
d2y/dx2 = -(b/a2tan3θ).(b3/b3)
d2y/dx2 = -(b4/a2y3)
Hence Proved
Question 9. If x = a(cost + tsint) and y = a(sint - tcost), prove that d2y/dx2 = sec3t/ at 0 < t < π/2.
Solution:
We have,
x = a(cost + tsint)and y=a(sint - tcost)
On differentiating both sides w.r.t t,
(dx/dt) = a(-sint + sint + tcost), (dy/dt) = a(cost - cost + tsint)
(dx/dt) = atcost, (dy/dt) = atsint
(dy/dx) = (dy/dt) × (dt/dx)
(dy/dx) = atsint × [1/atcost]
(dy/dx) = tant
Again differentiating both sides w.r.t x,
(d2y/dx2) = sec2x.(dt/dx)
(d2y/dx2) = sec2x.[1/atcost]
(d2y/dx2) = sec3x/at
Hence Proved
Question 10. If y = excosx, prove that d2y/dx2 = 2excos(x + π/2).
Solution:
We have,
y = excosx
On differentiating both sides w.r.t x,
(dy/dx) = excosx - exsinx
Again differentiating both sides w.r.t x,
d2y/dx2 = (excosx - exsinx) - (exsinx + excosx)
d2y/dx2 = excosx - excosx - exsinx - exsinx
d2y/dx2 = -2exsinx
d2y/dx2 = 2excos(x + π/2)
Question 11. If x = a cosθ, y = b sinθ, show that (d2y/dx2) = -b4/a2y3
Solution:
We have,
x = a cosθ and y = b sinθ
On differentiating both sides w.r.t θ,
(dx/dθ) = -a sinθ, (dy/dθ) = b cosθ
(dy/dx) = (dy/dθ)×(dθ/dx)
(dy/dx) = (b cosθ)/(-a sinθ)
(dy/dx) = -(b/a).cotθ
Again differentiating both sides w.r.t x,
(d2y/dx2) = -(b/a).(-cosec2θ).(dθ/dx)
(d2y/dx2) = (b/a).(cosec2θ).(1/-a sinθ)
(d2y/dx2) = (b/a).(cosec2θ).(1/-a sinθ)
d2y/dx2 = -(b/a2).(1/sin3θ)
d2y/dx2=-(b/a2sin3θ).(b3/b3)
d2y/dx2 = -(b4/a2y3) (since y = a sinθ)
Hence Proved
Question 12. If x = a(1 - cos3θ), y = a sin3θ, show that (d2y/dx2) = 32/27a, at θ = π/6.
Solution:
We have,
x = a(1 - cos3θ) and y = a sin3θ
On differentiating both sides w.r.t θ,
(dx/dθ) = a(3cos2θ.sinθ), (dy/dθ) = a 3sin2θcosθ
(dx/dθ) = 3acos2θ.sinθ, (dy/dθ) = 3asin2θ.cosθ
(dy/dx) = (dy/dθ) × (dθ/dx)
(dy/dx) = (3asin2θ.cosθ) × (3acos2θ.sinθ)
(dy/dx) = tan2θ/tanθ
(dy/dx) = tanθ
Again differentiating both sides w.r.t x,
(d2y/dx2) = sec2θ(dθ/dx)
(d2y/dx2) = sec2θ.[1/3acos2θ.sinθ]
(d2y/dx2) = sec4θ/3asinθ
At θ = π/6
d2y/dx2 = sec4(π/6)/3asin(π/6)
\frac{d^2y}{dx^2}=\frac{(\frac{2}{\sqrt{3}})^4}{3a\frac{1}{2}}
d2y/dx2 = 32/27a
Hence Proved
Question 13. If x = a(θ + sinθ), y = a(1 + cosθ), prove that (d2y/dx2) = -(a/y2).
Solution:
We have,
x = a(θ + sinθ) and y = a(1 + cosθ)
On differentiating both sides w.r.t θ,
(dx/dθ) = a(1 + cosθ), (dy/dθ) = -asinθ
(dy/dx) = (dy/dθ) × (dθ/dx)
(dy/dx) = [-asinθ] × [a(1 + cosθ)]
(dy/dx) = -sinθ/(1 + cosθ)
Again differentiating both sides w.r.t x,
\frac{d^2y}{dx^2}=-[\frac{(1+cosθ)\frac{d}{dx}sinθ+sinθ\frac{d}{dx}(1+cosθ)}{(1+cosθ)^2}]\frac{dθ}{dx}
\frac{d^2y}{dx^2}=-[\frac{(1+cosθ)cosθ-sinθsinθ)}{(1+cosθ)^2}]\frac{1}{a(1+cosθ)}
\frac{d^2y}{dx^2}=[\frac{-cosθ-cos^2θ-sin^2θ}{(1+cosθ)^2}]\frac{1}{a(1+cosθ)}
\frac{d^2y}{dx^2}=\frac{-cosθ-1}{a(1+cosθ)^3}
(d2y/dx2) = -(1 + cosθ)/a(1 + cosθ)3
(d2y/dx2) = -1/a(1 + cosθ)2
(d2y/dx2) = -[1/a(1 + cosθ)2](a/a)
d2y/dx2 = -a/y2
Hence Proved
Question 14. If x = a(θ - sinθ), y = a(1 + cosθ), find (d2y/dx2).
Solution:
We have,
x = a(θ - sinθ) and y = a(1 + cosθ)
On differentiating both sides w.r.t θ,
(dx/dθ) = a(1 - cosθ), (dy/dθ) = -asinθ
(dy/dx) = (dy/dθ) × (dθ/dx)
(dy/dx) = [-asinθ] × [a(1 - cosθ)]
(dy/dx) = -sinθ/(1 - cosθ)
Again differentiating both sides w.r.t x,
\frac{d^2y}{dx^2}=-[\frac{(1-cosθ)\frac{d}{dx}sinθ+sinθ\frac{d}{dx}(1-cosθ)}{(1-cosθ)^2}]\frac{dθ}{dx}
\frac{d^2y}{dx^2}=-[\frac{(1-cosθ)cosθ-sinθsinθ)}{(1-cosθ)^2}]\frac{1}{a(1-cosθ)}
\frac{d^2y}{dx^2}=[\frac{-cosθ+cos^2θ+sin^2θ}{(1-cosθ)^2}]\frac{1}{a(1-cosθ)}
\frac{d^2y}{dx^2}=\frac{1-cosθ}{a(1-cosθ)^3}
(d2y/dx2) = 1/a(1 - cosθ)2
\frac{d^2y}{dx^2}=\frac{1}{a(2sin^2\frac{θ}{2})^2}
d2y/dx2 = (1/4a)[cosec4(θ/2)]
Question 15. If x = a(1 - cosθ), y = a(θ + sinθ), prove that (d2y/dx2) = -1/a at θ = π/2.
Solution:
We have,
x = a(1 - cosθ) and y = a(θ + sinθ)
On differentiating both sides w.r.t θ,
(dx/dθ) = a(sinθ), (dy/dθ) = a(1 + cosθ)
(dy/dx) = (dy/dθ) × (dθ/dx)
(dy/dx) = [a(1 + cosθ)] × [asinθ)]
(dy/dx) = (1 + cosθ)/sinθ
Again differentiating both sides w.r.t x,
\frac{d^2y}{dx^2}=[\frac{sinθ\frac{d}{dx}(1+cosθ)-(1+cosθ)\frac{d}{dx}sinθ}{(sinθ)^2}]\frac{dθ}{dx}
\frac{d^2y}{dx^2}=[\frac{sinθ.sinθ-(1+cosθ)cosθ}{(sinθ)^2}]\frac{1}{asinθ}
d2y/dx2 = (-sin2θ - cosθ - cos2θ)/asin3θ
d2y/dx2 = -(sin2θ + cosθ + cos2θ)/asin3θ
At θ = π/2,
d2y/dx2 = -(1 + 0)/a
d2y/dx2 = -(1/a)
Hence Proved
Question 16. If x = a(1 + cosθ), y = a(θ + sinθ), prove that (d2y/dx2) = -1/a at θ = π/2.
Solution:
We have,
x = a(1 + cosθ) and y = a(θ + sinθ)
On differentiating both sides w.r.t θ,
(dx/dθ) = a(-sinθ), (dy/dθ) = a(1 + cosθ)
(dy/dx) = (dy/dθ) × (dθ/dx)
(dy/dx) = [a(1 + cosθ)] × [-asinθ)]
(dy/dx) = -(1 + cosθ)/sinθ
Again differentiating both sides w.r.t x,
\frac{d^2y}{dx^2}=-[\frac{sinθ\frac{d}{dx}(1+cosθ)-(1+cosθ)\frac{d}{dx}sinθ}{(sinθ)^2}]\frac{dθ}{dx}
\frac{d^2y}{dx^2}=-[\frac{sinθ.sinθ-(1+cosθ)cosθ}{(sinθ)^2}]\frac{1}{-asinθ}
d2y/dx2 = (-sin2θ - cosθ - cos2θ)/asin3θ
d2y/dx2 = -(sin2θ + cosθ + cos2θ)/asin3θ
At θ = π/2,
d2y/dx2 = -(1 + 0)/a
d2y/dx2 = -(1/a)
Hence Proved
Question 17. If x = cosθ, y = sin3θ, prove that y(d2y/dx2) + (dy/dx)2 = 3sin2θ(5cos2θ - 1).
Solution:
We have,
x = cosθ and y = sin3θ
On differentiating both sides w.r.t θ,
(dx/dθ) = -sinθ, (dy/dθ) = 3sin2θ.cosθ
(dy/dx) = (dy/dθ) × (dθ/dx)
(dy/dx) = [3sin2θ.cosθ] × [-sinθ]
(dy/dx) = -3sinθ.cosθ
Again differentiating both sides w.r.t x,
d2y/dx2 = -3[sinθ(-sinθ) + cosθ.cosθ](dθ/dx)
d2y/dx2 = (3sin2θ - 3cos2θ)/-sinθ
d2y/dx2 = -(3sin2θ - 3cos2θ)/sinθ
L.H.S,
y(d2y/dx2) + (dy/dx)2 = -sin3θ[(3sin2θ - 3cos2θ)/sinθ] + (-3sinθ.cosθ)2
= 3sin2θ.cos2θ - 3sin4θ + 9sin2θ.cos2θ
= 12sin2θ.cos2θ - 3sin4θ
= 3sin2θ(4cos2θ - sin2θ)
= 3sin2θ(4cos2θ - sin2θ - cos2θ + cos2θ)
= 3sin2θ[5cos2θ - (sin2θ + cos2θ)]
= 3sin2θ(5cos2θ - 1)
= R.H.S
L.H.S = R.H.S
Hence Proved
Question 18. If y = sin(sinx), prove that (d2y/dx2) + tanx.(dy/dx) + ycos2x = 0
Solution:
We have,
y = sin(sinx)
On differentiating both sides w.r.t x,
(dy/dx) = cos(sinx).cosx
Again differentiating both sides w.r.t x,
d2y/dx2 = -sin(sinx).cosx.cosx - cos(sinx).sinx
d2y/dx2 = -sin(sinx).cos2x - cos(sinx).sinx
d2y/dx2 = -sin(sinx).cos2x - cos(sinx).cosx.tanx
d2y/dx2 = -ycos2x - (dy/dx)tanx
d2y/dx2 + ycos2x + (dy/dx)tanx = 0
Hence Proved
Question 19. If x = sin t, y = sin pt, prove that (1 - x2)(d2y/dx2) - x.(dy/dx) + p2y = 0
Solution:
We have,
x = sin t, and y = sin pt
On differentiating both sides w.r.t t,
(dx/dt) = cos t, (dy/dt) = pcos pt
(dy/dx) = (dy/dt) × (dt/dx)
(dy/dx) = pcos pt×[1/cos t]
(dy/dx) = pcos pt/cos t
Again differentiating both sides w.r.t x,
\frac{d^2y}{dx^2}=\frac{-p^2sin pt.cos t+pcos pt.sint}{cos^2t}.\frac{dt}{dx}
d2y/dx2 = (-p2sin pt.cos t + pcos pt.sin t)/cos3t
d2y/dx2 = -(p2sin pt)/cos2t + (pcos pt.sin t)/cos3t
\frac{d^2y}{dx^2}=-\frac{p^2y}{cos^2t}+\frac{x\frac{dy}{dx}}{cos^2y}
cos2t(d2y/dx2) = -p2y + x(dy/dx)
(1 - sin2x)(d2y/dx2) + p2y - x(dy/dx) = 0
(1 - y2)(d2y/dx2) + p2y - x(dy/dx) = 0
Question 20. If y = (sin-1x)2, prove that (1 - x2)(d2y/dx2) - x.(dy/dx) + p2y = 0.
Solution:
We have,
y = (sin-1x)2,
On differentiating both sides w.r.t t,
\frac{dy}{dx}=2sin^{-1}x.\frac{1}{\sqrt{1-x^2}}
Again differentiating both sides w.r.t x,
\frac{d^2y}{dx^2}=\frac{2xsin^{-1}x}{(1-x^2)^\frac{3}{2}}+\frac{2}{1-x^2}
\frac{d^2y}{dx^2}=\frac{2xsin^{-1}x}{(1-x^2)\sqrt{1-x^2}}+\frac{2}{1-x^2}
d2y/dx2 = [x/(1 - x2)](dy/dx) + 2/(1 - x2)
(1 - x2)d2y/dx2 = x(dy/dx) + 2
(1 - x2)d2y/dx2 - x(dy/dx) - 2 = 0
Hence Proved
Question 21. If y = e^{tan^{-1}x}, prove that (1 + x2)y2 + (2x - 1)y1 = 0.
Solution:
We have,
y = e^{tan^{-1}x}
On differentiating both sides w.r.t t,
y1 = e^{tan^{-1}x} × [1/(1 + x2)]
Again differentiating both sides w.r.t x,
y2 = e^{tan^{-1}x}\frac{1}{(1+x^2)^2}+e^{tan^{-1}x}\frac{-2x}{(1+x^2)^2}
(1 + x2)y2 = e^{tan^{-1}x}/(1 + x2) - 2xe^{tan^{-1}x}/(1 + x2)
(1 + x2)y2 = (dy/dx) - 2x(dy/dx)
(1 + x2)y2 - (dy/dx) + 2x(dy/dx) = 0
(1 + x2)y2 + (2x - 1)(dy/dx) = 0
Hence Proved
Question 22. If y = 3cos(logx) + 4sin(logx), prove that x2y2 + xy1 + y = 0.
Solution:
We have,
y = 3cos(logx) + 4sin(logx)
On differentiating both sides w.r.t x,
y1 = -3sin(logx) × (1/x) + 4cos(logx) × (1/x)
xy1 = -3sin(logx) + 4cos(logx)
Again differentiating both sides w.r.t x,
xy2 + y1 = -3cos(logx)×(1/x) - 4sin(logx) × (1/x)
x2y2 + xy1 = -[3cos(logx) + 4sin(logx)]
x2y2 + xy1 = -y
x2y2 + xy1 + y = 0
Hence Proved
Question 23. If y = e2x(ax + b), show that y2 - 4y1 + 4y = 0.
Solution:
We have,
y = e2x(ax + b)
On differentiating both sides w.r.t θ,
y1 = 2e2x(ax + b) + a.e2x
Again differentiating both sides w.r.t x,
y2 = 4e2x(ax + b) + 2ae2x + 2a.e2x
y2 = 4e2x(ax + b) + 4a.e2x
Lets take L.H,S,
= y2 - 4y1 + 4y
= 4e2x(ax + b) + 4a.e2x - 4[2e2x(ax + b) + a.e2x] + 4[e2x(ax + b)]
= 8e2x(ax + b) - 8e2x(ax + b) + 4a.e2x - 4a.e2x
= 0
= R.H.S
L.H.S = R.H.S
Hence Proved
Question 24. If x = sin(logy/a), show that (1 - x2)y2 - xy1 - a2y = 0.
Solution:
We have,
x = sin(logy/a)
(logy/a) = sin-1x
logy = asin-1x
On differentiating both sides w.r.t x,
(1/y)y1 = a/√(1 - x2)
y1 = ay/√(1 - x2)
Again differentiating both sides w.r.t x,
y2 =a[\frac{\sqrt{1-x^2}\frac{dy}{dx}-\frac{2xy}{2\sqrt{1-x^2}}}{1-x^2}]
(1 - x2)y2 = a√(1 - x2) × y1 + axy/√(1 - x2)
(1 - x2)y2 = a√(1 - x2) × [ay/√(1 - x2)] + x[ay/√(1 - x2)]
(1 - x2)y2 = a2p + xy
(1 - x2)y2 - a2p - xy1 = 0
Hence Proved
Question 25. If logy = tan-1x, show that (1 + x2)y2 + (2x - 1)y1 = 0.
Solution:
We have,
logy = tan-1x
On differentiating both sides w.r.t θ,
(1/y)y1 = 1/(1 + x2)
(1 + x2)y1 = y
Again differentiating both sides w.r.t x,
2xy1 + (1 + x2)y2 = y1
(1 + x2)y2 + (2x - 1)y1 = 0
Hence Proved
Question 26. If y = tan-1x, show that (1 + x2)(d2y/dx2) + 2x(dy/dx) = 0.
Solution:
We have,
y = tan-1x
On differentiating both sides w.r.t x,
(dy/dx) = 1/(1 + x2)
Again differentiating both sides w.r.t x,
d2y/dx2 = [-1/(1 + x2)2] × (2x)
d2y/dx2 = [-2x/(1 + x2)2]
(1 + x2)(d2y/dx2) = -2x/(1 + x2)
(1 + x2)(d2y/dx2) = -2x(dy/dx)
(1 + x2)(d2y/dx2) + 2x(dy/dx) = 0
Hence Proved
Summary
Exercise 12.1 in Chapter 12 of RD Sharma's Class 12 Mathematics provides a comprehensive set of problems on higher order derivatives. These questions cover a wide range of functions, including polynomial, exponential, trigonometric, and composite functions. By practicing these problems, students can enhance their skills in applying differentiation rules recursively and understand the patterns that emerge in higher order derivatives.
Explore
Basic Arithmetic
Algebra
Geometry
Trigonometry & Vector Algebra
Calculus
Probability and Statistics
Practice