Open In App

Class 12 RD Sharma Solutions - Chapter 12 Higher Order Derivatives - Exercise 12.1 | Set 1

Last Updated : 19 Sep, 2024
Comments
Improve
Suggest changes
1 Likes
Like
Report

Chapter 12 of RD Sharma's Class 12 Mathematics textbook focuses on higher-order derivatives, a crucial concept in calculus. Exercise 12.1 specifically deals with finding higher-order derivatives of various functions, providing a comprehensive set of practice problems to reinforce understanding.

Find the second-order derivative of the following function

Question 1(i).  x3 + tanx

Solution:

Let us considered

f(x) = x3 + tanx

On differentiating both sides w.r.t x,

f'(x) = 3x2 + sec2x

Again differentiating both sides w.r.t x,

f''(x) = 6x + 2(secx)(secx.tanx)

f''(x) = 6x + 2sec2x.tanx

Question 1(ii). sin(logx)

Solution:

Let us considered

y = sin(logx)

On differentiating both sides w.r.t x,

(dy/dx) = cos(logx) × (1/x)

(dy/dx) = cos(logx)/x

Again differentiating both sides w.r.t x,

d2y/dx2 = d/dx[cos(logx)/x]

=\frac{x\frac{d}{dx}cos(logx)-cos(logx)\frac{d}{dx}x}{x^2}

\frac{-x[\frac{sin(logx)}{x}]-cos(logx).1}{x^2}

= -[sin(logx) + cos(logx)]/x2

Question 1(iii). log(sinx)

Solution:

Let us considered

y = log(sinx)

On differentiating both sides w.r.t x,

(dy/dx) = (1/sinx) × (cosx)

(dy/dx) = cotx

Again differentiating both sides w.r.t x,

d2y/dx2 = -cosec2x

Question 1(iv). exsin5x

Solution:

Let us considered

y = exsin5x

On differentiating both sides w.r.t x,

(dy/dx) = exsin5x + 5excos5x

Again differentiating both sides w.r.t x,

d2y/dx2 = exsin5x + 5excos5x + 5(excos5x - 5exsin5x)

d2y/dx2 = -24exsin5x + 10excos5x

d2y/dx2 = 2ex(5cos5x - 12sinx)

Question 1(v). e6xcos3x

Solution:

Let us considered

y = e6xcos3x

On differentiating both sides w.r.t x,

(dy/dx) = 6e6xcos3x - 3e6xsin3x

Again differentiating both sides w.r.t x,

d2y/dx2 = 6(6e6xcos3x - 3e6xsin3x) - 3(6e6xsin3x + 3e6xcos3x)

d2y/dx2 = 36e6xcos3x - 18e6xsin3x - 18e6xsin3x - 9e6xcos3x

d2y/dx2 = 27e6xcos3x - 36e6xsin3x

d2y/dx2 = 9e6x(3cos3x - 4sin3x)

Question 1(vi). x3logx

Solution:

Let us considered

y = x3logx

On differentiating both sides w.r.t x,

(dy/dx) = logx.3x2 + x3(1/x)

(dy/dx) = logx.3x2 + x2

(dy/dx) = x2(1 + 3logx)

Again differentiating both sides w.r.t x,

d2y/dx2 = (1 + 3logx).2x + x2(3/x)

d2y/dx2 = 2x + 6xlogx + 3x

d2y/dx2 = x(5 + 6logx)

Question 1(vii). tan-1x

Solution:

Let us considered

y = tan-1x

On differentiating both sides w.r.t x,

(dy/dx) = 1/(1 + x2)

Again differentiating both sides w.r.t x,

\frac{d^2y}{dx^2}=\frac{d}{dx}(1+x^2)^{-1}

d2y/dx2 = (-1)(1 + x2)-2.2x

\frac{d^2y}{dx^2}=\frac{-2x}{(1+x^2)^2}

Question 1(viii). x.cosx

Solution:

Let us considered

y = x.cosx

On differentiating both sides w.r.t x,

(dy/dx) = cosx + x(-sinx)

(dy/dx) = cosx - xsinx

Again differentiating both sides w.r.t x,

d2y/dx2 = -sinx - (sinx + xcosx)

d2y/dx2 = -2sinx - xcosx

d2y/dx2 = -(xcosx + 2sinx)

Question 1(ix). log(logx)

Solution:

Let us considered

y = log(logx)

On differentiating both sides w.r.t x,

(dy/dx) = (1/logx) × (1/x)

(dy/dx) = 1/xlogx

Again differentiating both sides w.r.t x,

\frac{d^2y}{dx^2}=\frac{d}{dx}(xlogx)^{-1}

d2y/dx2 = (-1)(xlogx)-2.[(d/dx)xlogx]

d2y/dx2 = (-1)(xlogx)-2[logx+x.(1/x)]

d2y/dx2= (-1)(xlogx)-2.(logx+1)

\frac{d^2y}{dx^2}=\frac{-(1+logx)}{(xlogx)^2}

Question 2. If y = e-x.cosx, show that d2y/dx2 = 2e-x.sinx.

Solution:

Let us considered

y = e-x.cosx

On differentiating both sides w.r.t x,

(dy/dx) = -e-x.cosx - e-x.sinx

Again differentiating both sides w.r.t x,

d2y/dx2 = -(-e-x.cosx - e-x.sinx) - (-e-x.sinx + e-x.cosx)

d2y/dx2 = e-x.cosx - e-x.cosx + e-x.sinx + e-x.sinx

d2y/dx2 = 2e-x.sinx

Hence Proved

Question 3. If y = x + tanx, Show that cos2x(d2y/dx2) - 2y + 2x = 0.

Solution:

Let us considered

y = x + tanx

On differentiating both sides w.r.t x,

(dy/dx) = 1 + sec2x

Again differentiating both sides w.r.t x,

d2y/dx2 = 0 + (2secx)(secx.tanx)

d2y/dx2 = 2sec2x.tanx

On multiplying both sides by cos2x

cos2x(d2y/dx2) = 2tanx

cos2x(d2y/dx2) = 2(y - x)   [since, tanx = y - x]

cos2x(d2y/dx2) - 2y + 2x = 0

Hence Proved

Question 4. If y = x3logx, prove that (d4y/dx4) = (6/x).

Solution:

Let us considered

y = x3logx

On differentiating both sides w.r.t x,

(dy/dx) = logx.3x2 + x3(1/x)

(dy/dx) = logx.3x2 + x2

(dy/dx) = x2(1 + 3logx)

Again differentiating both sides w.r.t x,

d2y/dx2 = (1 + 3logx).2x + x2(3/x)

d2y/dx2 = 2x + 6xlogx + 3x

d2y/dx2 = 5x + 6xlogx

Again differentiating both sides w.r.t x,

d3y/dx3 = 5 + 6[logx + (x/x)]

d3y/dx3 = 11 + 6logx

Again differentiating both sides w.r.t x,

d4y/dx4 = (6/x)

Hence Proved

Question 5. If y = log(sinx), prove that (d3y/dx3) = 2cosx.cosec3x.

Solution:

Let us considered

y = log(sinx)

On differentiating both sides w.r.t x,

(dy/dx) = (1/sinx) × (cosx)

(dy/dx) = cotx

Again differentiating both sides w.r.t x,

d2y/dx2 = -cosec2x

Again differentiating both sides w.r.t x,

d3y/dx3 = -2cosecx.(-cosesx.cotx)

d3y/dx3 = 2cosec2x.cotx

d3y/dx3 = 2cosec2x.(cosx/sinx)

d3y/dx3 = cosx.cosec3x

Hence Proved

Question 6. If y = 2sinx + 3cosx, show that (d2y/dx2) + y = 0.

Solution:

Let us considered

y = 2sinx + 3cosx

On differentiating both sides w.r.t x,

(dy/dx) = 2cosx - 3sinx

Again differentiating both sides w.r.t x,

d2y/dx2 = -2sinx - 3cosx

d2y/dx2 = -(2sinx + 3cosx)

d2y/dx2 = -y

d2y/dx2 + y = 0

Hence Proved

Question 7. If y = (logx/x), show that (d2y/dx2) = (2logx - 3)/x3

Solution:

Let us considered

y = (logx/x)

On differentiating both sides w.r.t x,

\frac{dy}{dx}=\frac{x\frac{d}{dx}logx-logx\frac{dx}{dx}}{x^2}

(dy/dx) = (1 - logx)/x2

Again differentiating both sides w.r.t x,

\frac{d^2y}{dx^2}=\frac{x^2\frac{d}{dx}(1-logx)-(1-logx)\frac{dx}{dx}}{x^4}

d2y/dx2 = [-x - 2x(1 - logx)]/x4

d2y/dx2 = (2xlogx - 3x)/x4

d2y/dx2 = (2logx - 3)/x3

d2y/dx2 + y = 0

Hence Proved

Question 8. If x = a secθ, y = b tanθ, show that (d2y/dx2) = -b4/a2y3

Solution:

We have,

x = a secθ and y = b tanθ

On differentiating both sides w.r.t θ,

(dx/dθ) = a secθ.tanθ, (dy/dθ) = b sec2θ

(dy/dx) = (dy/dθ) × (dθ/dx)

(dy/dx) = (b sec2θ)/(a secθ.tanθ)

(dy/dx) = (b/a).cosecθ

Again differentiating both sides w.r.t x,

(d2y/dx2) = (b/a).(-cosecθ.cotθ).(dθ/dx)

(d2y/dx2) = -(b/a).(cosecθ.cotθ).(1/a secθ.tanθ)

(d2y/dx2) = - (b/a2).(cotθ).(1/tan2θ)

d2y/dx2 = -(b/a2).(1/tan3θ)

d2y/dx2 = -(b/a2tan3θ).(b3/b3)

d2y/dx2 = -(b4/a2y3)

Hence Proved

Question 9. If x = a(cost + tsint) and y = a(sint - tcost), prove that d2y/dx2 = sec3t/ at 0 < t < π/2.

Solution:

We have,

x = a(cost + tsint)and y=a(sint - tcost)

On differentiating both sides w.r.t t,

(dx/dt) = a(-sint + sint + tcost), (dy/dt) = a(cost - cost + tsint)

(dx/dt) = atcost, (dy/dt) = atsint

(dy/dx) = (dy/dt) × (dt/dx)

(dy/dx) = atsint × [1/atcost]

(dy/dx) = tant

Again differentiating both sides w.r.t x,

(d2y/dx2) = sec2x.(dt/dx)

(d2y/dx2) = sec2x.[1/atcost]

(d2y/dx2) = sec3x/at

Hence Proved

Question 10. If y = excosx, prove that d2y/dx2 = 2excos(x + π/2).

Solution:

We have,

y = excosx

On differentiating both sides w.r.t x,

(dy/dx) = excosx - exsinx

Again differentiating both sides w.r.t x,

d2y/dx2 = (excosx - exsinx) - (exsinx + excosx)

d2y/dx2 = excosx - excosx - exsinx - exsinx

d2y/dx2 = -2exsinx

d2y/dx2 = 2excos(x + π/2)

Question 11. If x = a cosθ, y = b sinθ, show that (d2y/dx2) = -b4/a2y3

Solution:

We have,

x = a cosθ and y = b sinθ

On differentiating both sides w.r.t θ,

(dx/dθ) = -a sinθ, (dy/dθ) = b cosθ

(dy/dx) = (dy/dθ)×(dθ/dx)

(dy/dx) = (b cosθ)/(-a sinθ)

(dy/dx) = -(b/a).cotθ

Again differentiating both sides w.r.t x,

(d2y/dx2) = -(b/a).(-cosec2θ).(dθ/dx)

(d2y/dx2) = (b/a).(cosec2θ).(1/-a sinθ)

(d2y/dx2) = (b/a).(cosec2θ).(1/-a sinθ)

d2y/dx2 = -(b/a2).(1/sin3θ)

d2y/dx2=-(b/a2sin3θ).(b3/b3)

d2y/dx2 = -(b4/a2y3)   (since y = a sinθ)

Hence Proved

Question 12. If x = a(1 - cos3θ), y = a sin3θ, show that (d2y/dx2) = 32/27a, at θ = π/6.

Solution:

We have,

x = a(1 - cos3θ) and y = a sin3θ

On differentiating both sides w.r.t θ,

(dx/dθ) = a(3cos2θ.sinθ), (dy/dθ) = a 3sin2θcosθ

(dx/dθ) = 3acos2θ.sinθ, (dy/dθ) = 3asin2θ.cosθ

(dy/dx) = (dy/dθ) × (dθ/dx)

(dy/dx) = (3asin2θ.cosθ) × (3acos2θ.sinθ)

(dy/dx) = tan2θ/tanθ

(dy/dx) = tanθ

Again differentiating both sides w.r.t x,

(d2y/dx2) = sec2θ(dθ/dx)

(d2y/dx2) = sec2θ.[1/3acos2θ.sinθ]

(d2y/dx2) = sec4θ/3asinθ

At θ = π/6

d2y/dx2 = sec4(π/6)/3asin(π/6)

\frac{d^2y}{dx^2}=\frac{(\frac{2}{\sqrt{3}})^4}{3a\frac{1}{2}}

d2y/dx2 = 32/27a

Hence Proved

Question 13. If x = a(θ + sinθ), y = a(1 + cosθ), prove that (d2y/dx2) = -(a/y2).

Solution:

We have,

x = a(θ + sinθ) and y = a(1 + cosθ)

On differentiating both sides w.r.t θ,

(dx/dθ) = a(1 + cosθ), (dy/dθ) = -asinθ

(dy/dx) = (dy/dθ) × (dθ/dx)

(dy/dx) = [-asinθ] × [a(1 + cosθ)]

(dy/dx) = -sinθ/(1 + cosθ)

Again differentiating both sides w.r.t x,

\frac{d^2y}{dx^2}=-[\frac{(1+cosθ)\frac{d}{dx}sinθ+sinθ\frac{d}{dx}(1+cosθ)}{(1+cosθ)^2}]\frac{dθ}{dx}

\frac{d^2y}{dx^2}=-[\frac{(1+cosθ)cosθ-sinθsinθ)}{(1+cosθ)^2}]\frac{1}{a(1+cosθ)}

\frac{d^2y}{dx^2}=[\frac{-cosθ-cos^2θ-sin^2θ}{(1+cosθ)^2}]\frac{1}{a(1+cosθ)}

\frac{d^2y}{dx^2}=\frac{-cosθ-1}{a(1+cosθ)^3}

(d2y/dx2) = -(1 + cosθ)/a(1 + cosθ)3

(d2y/dx2) = -1/a(1 + cosθ)2

(d2y/dx2) = -[1/a(1 + cosθ)2](a/a)

d2y/dx2 = -a/y2

Hence Proved

Question 14. If x = a(θ - sinθ), y = a(1 + cosθ), find (d2y/dx2).

Solution:

We have,

x = a(θ - sinθ) and y = a(1 + cosθ)

On differentiating both sides w.r.t θ,

(dx/dθ) = a(1 - cosθ), (dy/dθ) = -asinθ

(dy/dx) = (dy/dθ) × (dθ/dx)

(dy/dx) = [-asinθ] × [a(1 - cosθ)]

(dy/dx) = -sinθ/(1 - cosθ)

Again differentiating both sides w.r.t x,

\frac{d^2y}{dx^2}=-[\frac{(1-cosθ)\frac{d}{dx}sinθ+sinθ\frac{d}{dx}(1-cosθ)}{(1-cosθ)^2}]\frac{dθ}{dx}

\frac{d^2y}{dx^2}=-[\frac{(1-cosθ)cosθ-sinθsinθ)}{(1-cosθ)^2}]\frac{1}{a(1-cosθ)}

\frac{d^2y}{dx^2}=[\frac{-cosθ+cos^2θ+sin^2θ}{(1-cosθ)^2}]\frac{1}{a(1-cosθ)}

\frac{d^2y}{dx^2}=\frac{1-cosθ}{a(1-cosθ)^3}

(d2y/dx2) = 1/a(1 - cosθ)2

\frac{d^2y}{dx^2}=\frac{1}{a(2sin^2\frac{θ}{2})^2}

d2y/dx2 = (1/4a)[cosec4(θ/2)]

Question 15. If x = a(1 - cosθ), y = a(θ + sinθ), prove that (d2y/dx2) = -1/a at θ = π/2.

Solution:

We have,

x = a(1 - cosθ) and y = a(θ + sinθ)

On differentiating both sides w.r.t θ,

(dx/dθ) = a(sinθ), (dy/dθ) = a(1 + cosθ)

(dy/dx) = (dy/dθ) × (dθ/dx)

(dy/dx) = [a(1 + cosθ)] × [asinθ)]

(dy/dx) = (1 + cosθ)/sinθ

Again differentiating both sides w.r.t x,

\frac{d^2y}{dx^2}=[\frac{sinθ\frac{d}{dx}(1+cosθ)-(1+cosθ)\frac{d}{dx}sinθ}{(sinθ)^2}]\frac{dθ}{dx}

\frac{d^2y}{dx^2}=[\frac{sinθ.sinθ-(1+cosθ)cosθ}{(sinθ)^2}]\frac{1}{asinθ}

d2y/dx2 = (-sin2θ - cosθ - cos2θ)/asin3θ

d2y/dx2 = -(sin2θ + cosθ + cos2θ)/asin3θ

At θ = π/2,

d2y/dx2 = -(1 + 0)/a

d2y/dx2 = -(1/a)

Hence Proved

Question 16. If x = a(1 + cosθ), y = a(θ + sinθ), prove that (d2y/dx2) = -1/a at θ = π/2.

Solution:

We have,

x = a(1 + cosθ) and y = a(θ + sinθ)

On differentiating both sides w.r.t θ,

(dx/dθ) = a(-sinθ), (dy/dθ) = a(1 + cosθ)

(dy/dx) = (dy/dθ) × (dθ/dx)

(dy/dx) = [a(1 + cosθ)] × [-asinθ)]

(dy/dx) = -(1 + cosθ)/sinθ

Again differentiating both sides w.r.t x,

\frac{d^2y}{dx^2}=-[\frac{sinθ\frac{d}{dx}(1+cosθ)-(1+cosθ)\frac{d}{dx}sinθ}{(sinθ)^2}]\frac{dθ}{dx}

\frac{d^2y}{dx^2}=-[\frac{sinθ.sinθ-(1+cosθ)cosθ}{(sinθ)^2}]\frac{1}{-asinθ}

d2y/dx2 = (-sin2θ - cosθ - cos2θ)/asin3θ

d2y/dx2 = -(sin2θ + cosθ + cos2θ)/asin3θ

At θ = π/2,

d2y/dx2 = -(1 + 0)/a

d2y/dx2 = -(1/a)

Hence Proved

Question 17. If x = cosθ, y = sin3θ, prove that y(d2y/dx2) + (dy/dx)2 = 3sin2θ(5cos2θ - 1).

Solution:

We have,

x = cosθ and y = sin3θ

On differentiating both sides w.r.t θ,

(dx/dθ) = -sinθ, (dy/dθ) = 3sin2θ.cosθ

(dy/dx) = (dy/dθ) × (dθ/dx)

(dy/dx) = [3sin2θ.cosθ] × [-sinθ]

(dy/dx) = -3sinθ.cosθ

Again differentiating both sides w.r.t x,

d2y/dx2 = -3[sinθ(-sinθ) + cosθ.cosθ](dθ/dx)

d2y/dx2 = (3sin2θ - 3cos2θ)/-sinθ

d2y/dx2 = -(3sin2θ - 3cos2θ)/sinθ

L.H.S,

y(d2y/dx2) + (dy/dx)2 = -sin3θ[(3sin2θ - 3cos2θ)/sinθ] + (-3sinθ.cosθ)2

= 3sin2θ.cos2θ - 3sin4θ + 9sin2θ.cos2θ

= 12sin2θ.cos2θ - 3sin4θ

= 3sin2θ(4cos2θ - sin2θ)

= 3sin2θ(4cos2θ - sin2θ - cos2θ + cos2θ)

= 3sin2θ[5cos2θ - (sin2θ + cos2θ)]

= 3sin2θ(5cos2θ - 1)

= R.H.S

L.H.S = R.H.S

Hence Proved

Question 18. If y = sin(sinx), prove that (d2y/dx2) + tanx.(dy/dx) + ycos2x = 0

Solution:

We have,

y = sin(sinx)

On differentiating both sides w.r.t x,

(dy/dx) = cos(sinx).cosx

Again differentiating both sides w.r.t x,

d2y/dx2 = -sin(sinx).cosx.cosx - cos(sinx).sinx

d2y/dx2 = -sin(sinx).cos2x - cos(sinx).sinx

d2y/dx2 = -sin(sinx).cos2x - cos(sinx).cosx.tanx

d2y/dx2 = -ycos2x - (dy/dx)tanx

d2y/dx2 + ycos2x + (dy/dx)tanx = 0

Hence Proved

Question 19. If x = sin t, y = sin pt, prove that (1 - x2)(d2y/dx2) - x.(dy/dx) + p2y = 0

Solution:

We have,

x = sin t, and y = sin pt

On differentiating both sides w.r.t t,

(dx/dt) = cos t, (dy/dt) = pcos pt

(dy/dx) = (dy/dt) × (dt/dx)

(dy/dx) = pcos pt×[1/cos t]

(dy/dx) = pcos pt/cos t

Again differentiating both sides w.r.t x,

\frac{d^2y}{dx^2}=\frac{-p^2sin pt.cos t+pcos pt.sint}{cos^2t}.\frac{dt}{dx}

d2y/dx2 = (-p2sin pt.cos t + pcos pt.sin t)/cos3t

d2y/dx2 = -(p2sin pt)/cos2t + (pcos pt.sin t)/cos3t

\frac{d^2y}{dx^2}=-\frac{p^2y}{cos^2t}+\frac{x\frac{dy}{dx}}{cos^2y}

cos2t(d2y/dx2) = -p2y + x(dy/dx)

(1 - sin2x)(d2y/dx2) + p2y - x(dy/dx) = 0

(1 - y2)(d2y/dx2) + p2y - x(dy/dx) = 0

Question 20. If y = (sin-1x)2, prove that (1 - x2)(d2y/dx2) - x.(dy/dx) + p2y = 0.

Solution:

We have,

y = (sin-1x)2,

On differentiating both sides w.r.t t,

\frac{dy}{dx}=2sin^{-1}x.\frac{1}{\sqrt{1-x^2}}

Again differentiating both sides w.r.t x,

\frac{d^2y}{dx^2}=\frac{2xsin^{-1}x}{(1-x^2)^\frac{3}{2}}+\frac{2}{1-x^2}

\frac{d^2y}{dx^2}=\frac{2xsin^{-1}x}{(1-x^2)\sqrt{1-x^2}}+\frac{2}{1-x^2}

d2y/dx2 = [x/(1 - x2)](dy/dx) + 2/(1 - x2)

(1 - x2)d2y/dx2 = x(dy/dx) + 2

(1 - x2)d2y/dx2 - x(dy/dx) - 2 = 0

Hence Proved

Question 21. If y = e^{tan^{-1}x}, prove that (1 + x2)y2 + (2x - 1)y1 = 0.

Solution:

We have,

y = e^{tan^{-1}x}

On differentiating both sides w.r.t t,

y1 e^{tan^{-1}x} × [1/(1 + x2)]

Again differentiating both sides w.r.t x,

y2 e^{tan^{-1}x}\frac{1}{(1+x^2)^2}+e^{tan^{-1}x}\frac{-2x}{(1+x^2)^2}

(1 + x2)y2 e^{tan^{-1}x}/(1 + x2) - 2xe^{tan^{-1}x}/(1 + x2)

(1 + x2)y2 = (dy/dx) - 2x(dy/dx)

(1 + x2)y2 - (dy/dx) + 2x(dy/dx) = 0

(1 + x2)y2 + (2x - 1)(dy/dx) = 0

Hence Proved

Question 22. If y = 3cos(logx) + 4sin(logx), prove that x2y2 + xy1 + y = 0.

Solution:

We have,

 y = 3cos(logx) + 4sin(logx)

On differentiating both sides w.r.t x,

y1 = -3sin(logx) × (1/x) + 4cos(logx) × (1/x)

xy1 = -3sin(logx) + 4cos(logx)

Again differentiating both sides w.r.t x,

xy2 + y1 = -3cos(logx)×(1/x) - 4sin(logx) × (1/x)

x2y2 + xy1 = -[3cos(logx) + 4sin(logx)]

x2y2 + xy1 = -y

x2y2 + xy1 + y = 0

Hence Proved

Question 23. If y = e2x(ax + b), show that y2 - 4y1 + 4y = 0.

Solution:

We have,

y = e2x(ax + b)

On differentiating both sides w.r.t θ,

y1 = 2e2x(ax + b) + a.e2x

Again differentiating both sides w.r.t x,

y2 = 4e2x(ax + b) + 2ae2x + 2a.e2x

y2 = 4e2x(ax + b) + 4a.e2x

Lets take L.H,S,

= y2 - 4y1 + 4y

= 4e2x(ax + b) + 4a.e2x - 4[2e2x(ax + b) + a.e2x] + 4[e2x(ax + b)]

= 8e2x(ax + b) - 8e2x(ax + b) + 4a.e2x - 4a.e2x

= 0

= R.H.S

L.H.S = R.H.S

Hence Proved

Question 24. If x = sin(logy/a), show that (1 - x2)y2 - xy1 - a2y = 0.

Solution:

We have,

 x = sin(logy/a)

(logy/a) = sin-1x

logy = asin-1x

On differentiating both sides w.r.t x,

(1/y)y1 = a/√(1 - x2)

y1 = ay/√(1 - x2)

Again differentiating both sides w.r.t x,

y=a[\frac{\sqrt{1-x^2}\frac{dy}{dx}-\frac{2xy}{2\sqrt{1-x^2}}}{1-x^2}]

(1 - x2)y2 = a√(1 - x2) × y1 + axy/√(1 - x2)

(1 - x2)y2 = a√(1 - x2) × [ay/√(1 - x2)] + x[ay/√(1 - x2)]

(1 - x2)y2 = a2p + xy

(1 - x2)y2 - a2p - xy1 = 0

Hence Proved

Question 25. If logy = tan-1x, show that (1 + x2)y2 + (2x - 1)y1 = 0.

Solution:

We have,

logy = tan-1x

On differentiating both sides w.r.t θ,

(1/y)y1 = 1/(1 + x2)

(1 + x2)y1 = y

Again differentiating both sides w.r.t x,

2xy1 + (1 + x2)y2 = y1

(1 + x2)y2 + (2x - 1)y1 = 0

Hence Proved

Question 26. If y = tan-1x, show that (1 + x2)(d2y/dx2) + 2x(dy/dx) = 0.

Solution:

We have,

y = tan-1x

On differentiating both sides w.r.t x,

(dy/dx) = 1/(1 + x2)

Again differentiating both sides w.r.t x,

d2y/dx2 = [-1/(1 + x2)2] × (2x)

d2y/dx2 = [-2x/(1 + x2)2]

(1 + x2)(d2y/dx2) = -2x/(1 + x2)

(1 + x2)(d2y/dx2) = -2x(dy/dx)

(1 + x2)(d2y/dx2) + 2x(dy/dx) = 0

Hence Proved

Summary

Exercise 12.1 in Chapter 12 of RD Sharma's Class 12 Mathematics provides a comprehensive set of problems on higher order derivatives. These questions cover a wide range of functions, including polynomial, exponential, trigonometric, and composite functions. By practicing these problems, students can enhance their skills in applying differentiation rules recursively and understand the patterns that emerge in higher order derivatives.


Explore