Question 9: Using differentials, find the approximate values of the following:
(xiv) cos (\frac{11\pi}{36})
Solution:
Considering the function as
y = f(x) = cos x
Taking x = π/3, and
x+△x = 11π/36
△x = 11π/36-π/3 = -π/36
y = cos x
y_{(x=\pi/3)} = cos (π/3) = 0.5
\frac{dy}{dx} = - sin x
(\frac{dy}{dx})_{x=\pi/3} = - sin (π/3) = -0.86603
△y = dy = (\frac{dy}{dx})_{x=\pi/3} dx
△y = (-0.86603) (-π/36)
△y = 0.0756
Hence, cos (\frac{11\pi}{36}) = 0.5+0.0756 = 0.5755
(xv) (80)^{\frac{1}{4}}
Solution:
Considering the function as
y = f(x) = (x)^{\frac{1}{4}}
Taking x = 81, and
x+△x = 80
△x = 80-81 = -1
y = (x)^{\frac{1}{4}}
y_{(x=81)} = (81)^{\frac{1}{4}}= 3
\frac{dy}{dx} = \frac{1}{4(x)^{\frac{3}{4}}}
(\frac{dy}{dx})_{x=81} = \frac{1}{4(81)^{\frac{3}{4}}} = \frac{1}{108}
△y = dy = (\frac{dy}{dx})_{x=81} dx
△y = (\frac{1}{108}) △x
△y = (\frac{1}{108}) (-1) = \frac{-1}{108} = -0.009259
Hence,
(80)^{\frac{1}{4}} = y+△y = 3 + (-0.009259) = 2.99074
(xvi) (29)^{\frac{1}{3}}
Solution:
Considering the function as
y = f(x) = (x)^{\frac{1}{3}}
Taking x = 27, and
x+△x = 29
△x = 29-27 = 2
y = (x)^{\frac{1}{3}}
y_{(x=27)} = (27)^{\frac{1}{3}}= 3
\frac{dy}{dx} = \frac{1}{3(x)^{\frac{2}{3}}}
(\frac{dy}{dx})_{x=27} = \frac{1}{3(27)^{\frac{2}{3}}} = \frac{1}{27}
△y = dy = (\frac{dy}{dx})_{x=27} dx
△y = (\frac{1}{27}) △x
△y = (\frac{1}{27}) (2) = 0.074
Hence,
(29)^{\frac{1}{3}} = y+△y = 3+0.074 = 3.074
(xvii) (66)^{\frac{1}{3}}
Solution:
Considering the function as
y = f(x) = (x)^{\frac{1}{3}}
Taking x = 64, and
x+△x = 66
△x = 66-64 = 2
y = (x)^{\frac{1}{3}}
y_{(x=64)} = (64)^{\frac{1}{3}}= 4
\frac{dy}{dx} = \frac{1}{3(x)^{\frac{2}{3}}}
(\frac{dy}{dx})_{x=64} = \frac{1}{3(64)^{\frac{2}{3}}} = \frac{1}{48}
△y = dy = (\frac{dy}{dx})_{x=64} dx
△y = (\frac{1}{48}) △x
△y = (\frac{1}{48}) (2) = 0.042
Hence,
(66)^{\frac{1}{3}} = y+△y = 4+0.042 = 4.042
(xviii) \sqrt{26}
Solution:
Considering the function as
y = f(x) = \sqrt{x}
Taking x = 25, and
x+△x = 26
△x = 26-25 = 1
y = \sqrt{x}
y_{(x=25)} = \sqrt{25} = 5
\frac{dy}{dx} = \frac{1}{2\sqrt{x}}
(\frac{dy}{dx})_{x=25} = \frac{1}{2\sqrt{25}} = \frac{1}{10}
△y = dy = (\frac{dy}{dx})_{x=25} dx
△y = (\frac{1}{10}) △x
△y = (\frac{1}{10}) (1) = 0.1
Hence,
\sqrt{26} = y+△y = 5 + 0.1 = 5.1
(xix) \sqrt{37}
Solution:
Considering the function as
y = f(x) = \sqrt{x}
Taking x = 36, and
x+△x = 37
△x = 37-36 = 1
y = \sqrt{x}
y_{(x=36)} = \sqrt{36} = 6
\frac{dy}{dx} = \frac{1}{2\sqrt{x}}
(\frac{dy}{dx})_{x=36} = \frac{1}{2\sqrt{36}} = \frac{1}{12}
△y = dy = (\frac{dy}{dx})_{x=36} dx
△y = (\frac{1}{12}) △x
△y = (\frac{1}{12}) (1) = 0.0833
Hence,
\sqrt{26} = y+△y = 6 + 0.0833 = 6.0833
(xx) \sqrt{0.48}
Solution:
Considering the function as
y = f(x) = \sqrt{x}
Taking x = 0.49, and
x+△x = 0.48
△x = 0.48-0.49 = -0.01
y = \sqrt{x}
y_{(x=0.49)} = \sqrt{0.49} = 0.7
\frac{dy}{dx} = \frac{1}{2\sqrt{x}}
(\frac{dy}{dx})_{x=0.49} = \frac{1}{2\sqrt{0.49}} = \frac{1}{1.4}
△y = dy = (\frac{dy}{dx})_{x=0.49} dx
△y = (\frac{1}{1.4}) △x
△y = (\frac{1}{1.4}) (-0.01) = -0.007143
Hence,
\sqrt{0.48} = y+△y = 0.7 + (-0.007143) = 0.693
(xxi) (82)^{\frac{1}{4}}
Solution:
Considering the function as
y = f(x) = (x)^{\frac{1}{4}}
Taking x = 81, and
x+△x = 82
△x = 82-81 = 1
y = (x)^{\frac{1}{4}}
y_{(x=81)} = (81)^{\frac{1}{4}}= 3
\frac{dy}{dx} = \frac{1}{4(x)^{\frac{3}{4}}}
(\frac{dy}{dx})_{x=81} = \frac{1}{4(81)^{\frac{3}{4}}} = \frac{1}{108}
△y = dy = (\frac{dy}{dx})_{x=81} dx
△y = (\frac{1}{108}) △x
△y = (\frac{1}{108})(1) = \frac{1}{108} = 0.009259
Hence,
(82)^{\frac{1}{4}} = y+△y = 3 + 0.009259 = 3.009259
(xxii) (\frac{17}{81})^{\frac{1}{4}}
Solution:
Considering the function as
y = f(x) = (x)^{\frac{1}{4}}
Taking x = 16/81, and
x+△x = 17/81
△x = 17/81-16/81 = 1/81
y = (x)^{\frac{1}{4}}
y_{(x=16/81)} = (16/81)^{\frac{1}{4}}= 2/3
\frac{dy}{dx} = \frac{1}{4(x)^{\frac{3}{4}}}
(\frac{dy}{dx})_{x=16/81} = \frac{1}{4(16/81)^{\frac{3}{4}}} = \frac{27}{32}
△y = dy = (\frac{dy}{dx})_{x=16/81} dx
△y = (\frac{27}{32}) △x
△y = (\frac{27}{32})(\frac{2}{3}) = \frac{1}{96} = 0.01042
Hence,
(\frac{17}{81})^{\frac{1}{4}} = y+△y = 2/3 + 0.01042 = 0.6771
(xxiii) (33)^{\frac{1}{5}}
Solution:
Considering the function as
y = f(x) = (x)^{\frac{1}{5}}
Taking x = 32, and
x+△x = 33
△x = 33-32 = 1
y = (x)^{\frac{1}{5}}
y_{(x=32)} = (32)^{\frac{1}{5}}= 2
\frac{dy}{dx} = \frac{1}{5(x)^{\frac{4}{5}}}
(\frac{dy}{dx})_{x=32} = \frac{1}{5(32)^{\frac{4}{5}}} = \frac{1}{80}
△y = dy = (\frac{dy}{dx})_{x=32} dx
△y = (\frac{1}{80}) △x
△y = (\frac{1}{80})(1) = \frac{1}{80} = 0.0125
Hence,
(32)^{\frac{1}{5}} = y+△y = 2 + 0.0125 = 2.0125
(xxiv) \sqrt{36.6}
Solution:
Considering the function as
y = f(x) = \sqrt{x}
Taking x = 36, and
x+△x = 36.6
△x = 36.6-36 = 0.6
y = \sqrt{x}
y_{(x=36)} = \sqrt{36} = 6
\frac{dy}{dx} = \frac{1}{2\sqrt{x}}
(\frac{dy}{dx})_{x=36} = \frac{1}{2\sqrt{36}} = \frac{1}{12}
△y = dy = (\frac{dy}{dx})_{x=36} dx
△y = (\frac{1}{12}) △x
△y = (\frac{1}{12}) (0.6) = 0.05
Hence,
\sqrt{26} = y+△y = 6 + 0.05 = 6.05
(xxv) (25)^{\frac{1}{3}}
Solution:
Considering the function as
y = f(x) = (x)^{\frac{1}{3}}
Taking x = 27, and
x+△x = 25
△x = 25-27 = -2
y = (x)^{\frac{1}{3}}
y_{(x=27)} = (27)^{\frac{1}{3}}= 3
\frac{dy}{dx} = \frac{1}{3(x)^{\frac{2}{3}}}
(\frac{dy}{dx})_{x=27} = \frac{1}{3(27)^{\frac{2}{3}}} = \frac{1}{27}
△y = dy = (\frac{dy}{dx})_{x=27} dx
△y = (\frac{1}{27}) △x
△y = (\frac{1}{27}) (-2) = -0.07407
Hence,
(25)^{\frac{1}{3}} = y+△y = 3+(-0.07407) = 2.9259
(xxvi) \sqrt{49.5}
Solution:
Considering the function as
y = f(x) = \sqrt{x}
Taking x = 49, and
x+△x = 49.5
△x = 49.5-49 = 0.5
y = \sqrt{x}
y_{(x=49)} = \sqrt{49} = 7
\frac{dy}{dx} = \frac{1}{2\sqrt{x}}
(\frac{dy}{dx})_{x=49} = \frac{1}{2\sqrt{49}} = \frac{1}{14}
△y = dy = (\frac{dy}{dx})_{x=49} dx
△y = (\frac{1}{14}) △x
△y = (\frac{1}{14}) (0.5) = 0.0357
Hence,
\sqrt{49.5} = y+△y = 7 + 0.0357 = 7.0357
Question 10: Find the appropriate value of f(2.01), where f(x) = 4x2+5x+2
Solution:
Considering the function as
y = f(x) = 4x2+5x+2
Taking x = 2, and
x+△x = 2.01
△x = 2.01-2 = 0.01
y = 4x2+5x+2
y_{(x=2)} = 4(2)2+5(2)+2 = 28
\frac{dy}{dx} = 8x+5
(\frac{dy}{dx})_{x=2} = 8(2)+5 = 21
△y = dy = (\frac{dy}{dx})_{x=2} dx
△y = (21) △x
△y = (21) (0.01) = 0.21
Hence,
f(2.01) = y+△y = 28 + 0.21 = 28.21
Question 11: Find the appropriate value of f(5.001), where f(x) = x3-7x2+15
Solution:
Considering the function as
y = f(x) = x3-7x2+15
Taking x = 5, and
x+△x = 5.001
△x =5.001-5 = 0.001
y = x3-7x2+15
y_{(x=5)} = (5)3-7(5)2+15 = -35
\frac{dy}{dx} = 3x2-14x
(\frac{dy}{dx})_{x=5} = 3(5)2-14(5) = 5
△y = dy = (\frac{dy}{dx})_{x=5} dx
△y = (5) △x
△y = (5) (0.001) = 0.005
Hence,
f(5.001) = y+△y = -35 + 0.005 = -34.995
Question 12: Find the appropriate value of log10 1005, given that log10 e=0.4343
Solution:
Considering the function as
y = f(x) = log10 x
Taking x = 1000, and
x+△x = 1005
△x =1005-1000 = 5
y = log10 x = \frac{log_ex}{log_e10}
y_{(x=1000)} = log10 1000 = 3
\frac{dy}{dx} = \frac{0.4343}{x}
(\frac{dy}{dx})_{x=1000} = \frac{0.4343}{1000} = 0.0004343
△y = dy = (\frac{dy}{dx})_{x=1000} dx
△y = (0.0004343) △x
△y = (0.0004343) (5) = 0.0021715
Hence, log10 1005 = y+△y = 3 + 0.0021715 = 3.0021715
Question 13: If the radius of a sphere is measured as 9cm with an error of 0.03m, find the approximate error in calculating its surface area.
Solution:
According to the given condition,
As, Surface area = 4πx2
Let △x be the change in the radius and △y be the change in the surface area
x = 9
△x = 0.03m = 3cm
x+△x = 9+3 = 12cm
y_{(x=9)} = 4πx2 = 4π(9)2 = 324 π
\frac{dy}{dx} = 8πx
(\frac{dy}{dx})_{x=9} = 8π(9) = 72π
△y = dy = (\frac{dy}{dx})_{x=9} dx
△y = (72π) △x
△y = (72π) (3) = 216 π
Hence, approximate error in surface area of the sphere is 216 π cm2
Question 14: Find the approximate change in the surface area of a cube as side x meters caused by decreasing the side by 1%.
Solution:
According to the given condition,
As, Surface area = 6x2
Let △x be the change in the length and △y be the change in the surface area
△x/x × 100 = 1
\frac{dy}{dx} = 6(2x) = 12x
△y = (\frac{dy}{dx}) △x
△y = (12x) (x/100)
△y = 0.12 x2
Hence, the approximate change in the surface area of a cubical box is 0.12 x2 m2
Question 15: If the radius of a sphere is measured as 7m with an error of 0.02m, find the approximate error in calculating its volume.
Solution:
According to the given condition,
As, Volume of sphere = \frac{4}{3} πx3
Let △x be the error in the radius and △y be the error in the volume
x = 7
△x = 0.02 cm
\frac{dy}{dx} = \frac{4}{3} π(3x2) = 4πx2
(\frac{dy}{dx})_{x=7} = 4π(7)2 = 196π
△y = dy = (\frac{dy}{dx})_{x=7} dx
△y = (196π) △x
△y = (196π) (0.02) = 3.92 π
Hence, approximate error in volume of the sphere is 3.92 π cm2
Question 16: Find the approximate change in the volume of a cube as side x meters caused by increasing the side by 1%.
Solution:
According to the given condition,
As, Volume of cube = x3
Let △x be the change in the length and △y be the change in the volume
△x/x × 100 = 1
\frac{dy}{dx} = 3x2
△y = (\frac{dy}{dx}) △x
△y = (3x2) (x/100)
△y = 0.03 x3
Hence, the approximate change in the volume of a cubical box is 0.03 x3 m3
Explore
Basic Arithmetic
Algebra
Geometry
Trigonometry & Vector Algebra
Calculus
Probability and Statistics
Practice