Question 1. Find the equation of the tangent to the curve √x + √y = a at the point (a2/4, a2/4).
Solution:
We have,
√x + √y = a
On differentiating both sides w.r.t. x, we get
\frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{y}}\frac{dy}{dx} = 0
dy/dx = -√y/√x
Given, (x1, y1) = (a2/4, a2/4),
Slope of tangent, m = (\frac{dy}{dx})_{\left(\frac{a^2}{4},\frac{a^2}{4}\right)}=\frac{-\sqrt{\frac{a^2}{4}}}{\sqrt{\frac{a^2}{4}}}=-1
The equation of tangent is,
y – y1 = m (x – x1)
y – a2/4 = –1(x – a2/4)
y – a2/4 = –x + a2/4
x + y = a2/2
Question 2. Find the equation of the normal to y = 2x3 − x2 + 3 at (1, 4).
Solution:
We have,
y = 2x3 − x2 + 3
On differentiating both sides w.r.t. x, we get
dy/dx = 6x2 - 2x
Slope of tangent = \left( \frac{dy}{dx} \right)_{\left( 1, 4 \right)} = 6 (1)2 – 2 (1) = 4
Slope of normal = - 1/Slope of tangent = - 1/4
Given, (x1, y1) = (1, 4),
The equation of normal is,
y - y1 = m (x - x1)
y - 4 = -1/4 (x - 1)
4y - 16 = - x + 1
x + 4y = 17
Question 3. Find the equation of the tangent and the normal to the following curve at the indicated point:
(i) y = x4 − bx3 + 13x2 − 10x + 5 at (0, 5)
Solution:
We have,
y = x4 − bx3 + 13x2 − 10x + 5
On differentiating both sides w.r.t. x, we get
dy/dx = 4x3 - 3bx2 + 26x - 10
Slope of tangent, m= \left( \frac{dy}{dx} \right)_{\left( 0, 5 \right)} = -10
Given, (x1, y1) = (0, 5)
The equation of tangent is,
y - y1 = m (x - x1)
y - 5 = - 10 (x - 0)
y - 5 = -10x
y + 10x - 5 = 0
The equation of normal is,
y - y1 = -1/m (x - x1)
y - 5 = 1/10 (x - 0)
10y - 50 = x
x - 10y + 50 = 0
(ii) y = x4 − 6x3 + 13x2 − 10x + 5 at x = 1
Solution:
We have,
y = x4 − 6x3 + 13x2 − 10x + 5
When x = 1, we have y = 1 - 6 + 13 - 10 + 5 = 3
So, (x1, y1) = (1, 3)
Now, y = x4 − 6x3 + 13x2 − 10x + 5
On differentiating both sides w.r.t. x, we get
dy/dx = 4 x3 - 18 x2 + 26x - 10
Slope of tangent, m = \left( \frac{dy}{dx} \right)_{\left( 1, 3 \right)} = 4 - 18 + 26 - 10 = 2
The equation of tangent is,
y - y1 = 2 (x - x1)
y - 3 = 2 (x - 1)
y - 3 = 2x - 2
2x - y + 1 = 0
The equation of normal is,
y - y1 = -1/m (x - x1)
y - 3 = -1/2 (x - 1)
2y - 6 = - x + 1
x + 2y - 7 = 0
(iii) y = x2 at (0, 0)
Solution:
We have,
y = x2
On differentiating both sides w.r.t. x, we get
dy/dx = 2x
Given, (x1, y1) = (0, 0)
Slope of tangent, m= \left(\frac{dy}{dx} \right)_{\left( 0, 0 \right)} = 2 (0) = 0
The equation of tangent is,
y - y1 = m (x - x1)
y - 0 = 0 (x - 0)
y = 0
The equation of normal is,
y - y1 = -1/m (x - x1)
y - 0 = -1/0 (x - 0)
x = 0
(iv) y = 2x2 − 3x − 1 at (1, −2)
Solution:
We have,
y = 2x2 − 3x − 1
On differentiating both sides w.r.t. x, we get
dy/dx = 4x - 3
Given, (x1, y1) = (1, -2)
Slope of tangent, m = \left( \frac{dy}{dx} \right)_{\left( 1, - 2 \right)} = 4 - 3 = 1
The equation of tangent is,
y - y1 = m (x - x1)
y + 2 = 1 (x - 1)
y + 2 = x - 1
x - y - 3 = 0
The equation of normal is,
y - y1 = -1/m (x - x1)
y + 2 = -1 (x - 1)
y + 2 = -x + 1
x + y + 1 = 0
(v) y^2 = \frac{x^3}{4 - x} at (2, -2)
Solution:
We have,
y^2 = \frac{x^3}{4 - x}
On differentiating both sides w.r.t. x, we get
2y \frac{dy}{dx} = \frac{\left( 4 - x \right)\left( 3 x^2 \right) - x^3 \left( - 1 \right)}{\left( 4 - x \right)^2}
= \frac{12 x^2 - 3 x^3 + x^3}{\left( 4 - x \right)^2}
= \frac{12 x^2 - 2 x^3}{\left( 4 - x \right)^2}
Given, (x1, y1) = (2, -2)
Slope of tangent, m= \left( \frac{dy}{dx} \right)_{\left( 2, - 2 \right)} = \frac{48 - 16}{- 16} = -2
The equation of tangent is,
y - y1 = m (x - x1)
y + 2 = -2 (x - 2)
y + 2 = -2x + 4
2x + y - 2 = 0
The equation of normal is,
y - y1 = -1/m (x - x1)
y + 2 = 1/2 (x - 2)
2y + 4 = x - 2
x - 2y - 6 = 0
(vi) y = x2 + 4x + 1 at x = 3
Solution:
We have,
y = x2 + 4x + 1
On differentiating both sides w.r.t. x, we get,
dy/dx = 2x + 4
When x = 3, y = 9 + 12 + 1 = 22
So, (x1, y1) = (3, 22)
Slope of tangent, m= \left( \frac{dy}{dx} \right)_{x = 3} = 10
The equation of tangent is,
y - y1 = m (x - x1)
y - 22 = 10 (x - 3)
y - 22 = 10x - 30
10x - y - 8 = 0
The equation of normal is,
y - y1 = -1/m (x - x1)
y - 22 = -1/10 (x - 3)
10y - 220 = - x + 3
x + 10y - 223 = 0
(vii) \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 at (a cos θ, b sin θ)
Solution:
We have,
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1
On differentiating both sides w.r.t. x, we get
\frac{2x}{a^2} + \frac{2y}{b^2}\frac{dy}{dx} = 0
\frac{2y}{b^2}\frac{dy}{dx} = \frac{- 2x}{a^2}
dy/dx = -x b2/y a2
Slope of tangent, m= \left( \frac{dy}{dx} \right)_{\left( a \cos \theta, b \sin \theta \right)} =\frac{- a \cos \theta \left( b^2 \right)}{b \sin \theta \left( a^2 \right)}=\frac{- b \cos \theta}{a \sin \theta}
Given, (x1, y1) = (a cos θ, b sin θ)
The equation of tangent is,
y - y1 = m (x - x1)
y - b sin θ = -bcosθ/asinθ (x - a cos θ)
ay sin θ - ab sin2 θ = -bx cos θ + ab cos2 θ
bx cos θ + ay sin θ = ab
On dividing by ab, we get
x/a cosθ + y/b sinθ = 1
The equation of normal is,
y - y1 = -1/m (x - x1)
y - b sin θ = asinθ/bcosθ (x - a cos θ)
by cos θ - b2 sin θ cos θ = ax sin θ - a2 sin θ cos θ
ax sin θ - by cos θ = (a2 - b2) sin θ cos θ
On dividing by sin θ cos θ, we get
ax sec θ - by cosec θ = a2 - b2
(viii) \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 at (a sec θ, b tan θ)
Solution:
We have,
\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1
On differentiating both sides w.r.t. x, we get
\frac{2x}{a^2} - \frac{2y}{b^2}\frac{dy}{dx} = 0
\frac{2y}{b^2}\frac{dy}{dx} = \frac{2x}{a^2}
dy/dx = x b2/y a2
Slope of tangent}, m= \left(\frac{dy}{dx} \right)_{\left( a \sec \theta, b \tan \theta \right)} =\frac{a \sec \theta \left( b^2 \right)}{b \tan \theta \left( a^2 \right)}=\frac{b}{a \sin \theta}
Given, (x1, y1) = (a sec θ, b tan θ)
The equation of tangent is,
y - y1 = m (x - x1)
y - b tan θ = \frac{b}{a \sin \theta} (x - a sec θ)
ay sin θ - ab(sin2 θ/cos θ) = bx - (ab/cos θ)
\frac{ay \sin \theta \cos \theta - ab \sin^2 \theta}{\cos \theta} = \frac{bx \cos \theta - ab}{\cos \theta}
ay sin θ cos θ - ab sin2 θ = bx cos θ - ab
bx cos θ - ay sin θ cos θ = ab (1 - sin2 θ)
bx cos θ - ay sin θ cos θ = ab cos2 θ
On dividing by ab cos2 θ, we get
x/a sec θ - y/b tan θ = 1
The equation of normal is,
y - y1 = -1/m (x - x1)
y - b tan θ = -a sin θ/b (x - a sec θ)
by - b2 tan θ = -ax sin θ + a2 tan θ
ax sin θ + by = (a2 + b2) tan θ
On dividing by tan θ, we get
ax cos θ + by cot θ = a2 + b2
(ix) y2 = 4ax at (a/m2, 2a/m)
Solution:
We have,
y2 = 4ax
On differentiating both sides w.r.t. x, we get
2y \frac{dy}{dx} = 4a
dy/dx = 2a/y
Given, (x1, y1) = (a/m2, 2a/m)
Slope of tangent = \left( \frac{dy}{dx} \right)_{\left( \frac{a}{m^2}, \frac{2a}{m} \right)} =\frac{2a}{\left( \frac{2a}{m} \right)} = m
The equation of tangent is,
y - y1 = m (x - x1)
y - \frac{2a}{m} = m \left( x - \frac{a}{m^2} \right)
\frac{my - 2a}{m} = m\left( \frac{m^2 x - a}{m^2} \right)
my - 2a = m2 x - a
m2 x - my + a = 0
The equation of normal is,
y - y1 = -1/m (x - x1)
y - \frac{2a}{m} = \frac{- 1}{m}\left( x - \frac{a}{m^2} \right)
\frac{my - 2a}{m} = \frac{- 1}{m}\left( \frac{m^2 x - a}{m^2} \right)
m3 y - 2a m2 = - m2 x + a
m2 x + m3 y - 2a m2 - a = 0
(x) c2 (x2 + y2) = x2y2 at (c/cos θ, c/sin θ)
Solution:
We have,
c2 (x2 + y2) = x2y2
On differentiating both sides w.r.t. x, we get
2x c2 + 2y c2(dy/dx) = x2 2y(dy/dx) + 2x y2
dy/dx(2y c2 - 2 x2 y) = 2x y2 - 2x c2
\frac{dy}{dx} = \frac{x y^2 - x c^2}{y c^2 - x^2 y}
Slope of tangent, m= \left( \frac{dy}{dx} \right)_{\left( \frac{c}{\cos \theta}, \frac{c}{\sin \theta} \right)}
= \frac{\frac{c^3}{\cos \theta \sin^2 \theta} - \frac{c^3}{\cos \theta}}{\frac{c^3}{\sin\theta} - \frac{c^3}{\cos^2 \theta \sin\theta}}
= \frac{\frac{1 - \sin^2 \theta}{\cos\theta \sin^2 \theta}}{\frac{\cos^2 \theta - 1}{\cos^2 \theta \sin\theta}}
= \frac{co s^2 \theta}{\cos \theta \sin^2 \theta} \times \frac{\cos^2 \theta \sin\theta}{- \sin^2 \theta}
= -cos3 θ/ sin3 θ
Given, (x1, y1) = (c/cos θ, c/sin θ)
The equation of tangent is,
y - y1 = m (x - x1)
y - \frac{c}{\sin \theta} = \frac{- \cos^3 \theta}{\sin^3 \theta} \left( x - \frac{c}{\cos \theta} \right)
\frac{y\sin\theta - c}{\sin\theta} = \frac{- \cos^3 \theta}{\sin^3 \theta}\left( \frac{x \cos\theta - c}{\cos\theta} \right)
sin2 θ (y sin θ - c) = -cos2 θ (x cos θ - c)
y sin3 θ - c sin2 θ = - x cos3 θ + c cos2 θ
x cos3 θ + y sin3 θ = c ( sin2 θ + cos2 θ)
x cos3 θ + y sin3 θ = c
The equation of normal is,
y - y1 = -1/m (x - x1)
y - \frac{c}{\sin \theta} = \frac{\sin^3 \theta}{\cos^3 \theta}\left( x - \frac{c}{\cos \theta} \right)
\cos^3 \theta\left( y - \frac{c}{\sin \theta} \right) = \sin^3 \theta\left( x - \frac{c}{\cos \theta} \right)
y \cos^3 \theta - \frac{c \cos^3 \theta}{\sin\theta} = x \sin^3 \theta - \frac{c \sin^3 \theta}{\cos\theta}
x \sin^3 \theta - y \cos^3 \theta = \frac{c \sin^3 \theta}{\cos\theta} - \frac{c \cos^3 \theta}{\sin\theta}
x \sin^3 \theta - y \cos^3 \theta = c\left( \frac{\sin^4 \theta - \cos^4 \theta}{\cos\theta \sin\theta} \right)
x \sin^3 \theta - y \cos^3 \theta = c\left[ \frac{\left( \sin^2 \theta + \cos^2 \theta \right)\left( \sin^2 \theta - \cos^2 \theta \right)}{\cos\theta \sin\theta} \right]
\sin^3 \theta - y \cos^3 \theta =2c \left[ \frac{- \left( \cos^2 \theta - \sin^2 \theta \right)}{2\cos\theta \sin\theta} \right]
sin3 θ - ycos3 θ = 2c[-cos (2θ)/sin(2θ)]
sin3 θ - y cos3 θ = -2c cot 2θ
sin3 θ - y cos3 θ + 2c cot 2θ = 0
(xi) xy = c2 at (ct, c/t)
Solution:
We have,
xy = c2
On differentiating both sides w.r.t. x, we get
x\frac{dy}{dx} + y = 0
dy/dx = - y/x
Given, (x1, y1) = (ct, c/t)
Slope of tangent, m= \left( \frac{dy}{dx} \right)_{\left( ct, \frac{c}{t} \right)} =\frac{- \frac{c}{t}}{ct}=\frac{- 1}{t^2}
The equation of tangent is,
y - y1 = m (x - x1)
y - \frac{c}{t} = \frac{- 1}{t^2} \left( x - ct \right)
\frac{yt - c}{t} = \frac{- 1}{t^2} \left( x - ct \right)
yt2 - ct = -x + ct
x + y t2 = 2ct
The equation of normal is,
y - y1 = -1/m (x - x1)
y - c/t - t2(x - ct)
yt - c = t3 x - c t4
x t3 - yt = c t4 - c
(xii) \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 at (x1, y1)
Solution:
We have,
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1
On differentiating both sides w.r.t. x,
\frac{2x}{a^2} + \frac{2y}{b^2}\frac{dy}{dx} = 0
\frac{2y}{b^2}\frac{dy}{dx} = \frac{- 2x}{a^2}
dy/dx = - x b2/y a2
Slope of tangent, m= \left( \frac{dy}{dx} \right)_{\left( x_1 , y_1 \right)} =\frac{- x_1 b^2}{y_1 a^2}
The equation of tangent is,
y - y1 = m (x - x1)
y - y1 = - x1 b2/y1 a2(x - x1)
y y1 a2 - y12 a2 = -x x1 b2 + x12 b2
x x1 b2 + y y1 a2 = x12 b2 + y12 a2 . . . . (1)
Given (x1, y1) lies on the curve, we get
\frac{{x_1}^2}{a^2} + \frac{{y_1}^2}{b^2} = 1
\frac{{x_1}^2 b^2 + {y_1}^2 a^2}{a^2 b^2} = 1
x12 b2 + y12 a2 = a2 b2
Substituting this in (1), we get
x x1 b2 + y y1 a2 = a2 b2
On dividing this by a2 b2, we get
\frac{x x_1}{a^2} + \frac{y y_1}{b^2} = 1
The equation of normal is,
y - y1 = m (x - x1)
y - y1 = y1 a2/x1 b2(x - x1)
y x1 b2 - x1 y1 b2 = x y1 a2 - x1 y1 a2
x y1 a2 - y x1 b2 = x1 y1 a2 - x1 y1 b2
x y1 a2 - y x1 b2 = x1 y1 (a2 - b2)
On dividing by x1 y1, we get
\frac{a^2 x}{x_1} - \frac{b^2 y}{y_1} = a^2 - b^2
(xiii) \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 at (x0 , y0)
Solution:
We have,
\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1
On differentiating both sides w.r.t. x, we get
\frac{2x}{a^2} - \frac{2y}{b^2}\frac{dy}{dx} = 0
\frac{2y}{b^2}\frac{dy}{dx} = \frac{2x}{a^2}
dy/dx = x b2/y a2
Slope of tangent, m= \left( \frac{dy}{dx} \right)_{\left( x_0 , y_0 \right)} =\frac{x_0 b^2}{y_0 a^2}
The equation of tangent is,
y - y1 = m (x - x1)
y - y0 = x0 b2/y0 a2(x - x0)
y y0 a2 - y02 a2 = x x0 b2 - x02 b2
x x0 b2 - y y0 a2 = x02 b2 - y02 a2 . . . . (1)
\frac{{x_0}^2}{a^2} - \frac{{y_0}^2}{b^2} = 1
x02 b2 - y02 a2 = a2 b2
Substituting this in eq(1), we get,
x x0 b2 - y y0 a2 = a2 b2
Dividing this by a2 b2, we get
\frac{x x_0}{a^2} - \frac{y y_0}{b^2} = 1
The equation of normal is,
y - y1 = m (x - x1)
y - y0 = y0 a2/x0 b2(x - x0)
y x0 b2 - x0 y0 b2 = -x y0 a2 + x0 y0 a2
x y0 a2 + y x0 b2 = x0 y0 a2 + x0 y0 b2
x y0 a2 + y x0 b2 = x0 y0 (a2 + b2)
Dividing by x0 y0, we get
\frac{a^2 x}{x_0} + \frac{b^2 y}{y_0} = a^2 + b^2
(xiv) x^\frac{2}{3} + y^\frac{2}{3} = 2 at (1, 1)
Solution:
We have,
x^\frac{2}{3} + y^\frac{2}{3} = 2
On differentiating both sides w.r.t. x, we get
\frac{2}{3} x^\frac{- 1}{3} + \frac{2}{3} y^\frac{- 1}{3} \frac{dy}{dx} = 0
\frac{dy}{dx} = \frac{- x^\frac{- 1}{3}}{y^\frac{- 1}{3}} = \frac{- y^\frac{1}{3}}{x^\frac{1}{3}}
Slope of tangent, m= \left( \frac{dy}{dx} \right)_{\left( 1, 1 \right)} = -1
Given, (x1, y1) = (1, 1)
The equation of tangent is,
y - y1 = m (x - x1)
y - 1 = -1 (x - 1)
y - 1 = -x + 1
x + y - 2 = 0
The equation of normal is,
y - y1 = -1/m (x - x1)
y - 1 = 1 (x - 1)
y - 1 = x - 1
y - x = 0
(xv) x2 = 4y at (2, 1)
Solution:
We have,
x2 = 4y
On differentiating both sides w.r.t. x, we get
2x = 4dy/dx
dy/dx = x/2
Slope of tangent, m= \left( \frac{dy}{dx} \right)_{\left( 2, 1 \right)} = 2/2 = 1
Given, (x1, y1) = (2, 1)
The equation of tangent is,
y - y1 = m (x - x1)
y - 1 = 1 (x - 2)
y - 1 = x - 2
x - y - 1 = 0
The equation of normal is,
y - y1 = -1/m (x - x1)
y - 1 = - 1 (x - 2)
y - 1 = - x + 2
x + y - 3 = 0
(xvi) y2 = 4x at (1, 2)
Solution:
We have,
y2 = 4x
On differentiating both sides w.r.t. x, we get
2y (dy/dx) = 4
dy/dx = 2/y
Slope of tangent, m= \left( \frac{dy}{dx} \right)_{\left( 1, 2 \right)} = 2/2 = 1
Given, (x1, y1) = (1, 2)
The equation of tangent is,
y - y1 = m (x - x1)
y - 2 = 1 (x - 1)
y - 2 = x - 1
x - y + 1 = 0
The equation of normal is,
y - y1 = -1/m (x - x1)
y - 2 = -1 (x - 1)
y - 2 = -x + 1
x + y - 3 = 0
(xvii) 4x2 + 9y2 = 36 at (3 cos θ, 2 sin θ)
Solution:
We have,
4x2 + 9y2 = 36
On differentiating both sides w.r.t. x, we get
8x + 18y dy/dx = 0
18y dy/dx = - 8x
dy/dx = -8x/18y = -4x/9y
Slope of tangent, m = \left( \frac{dy}{dx} \right)_{\left( 3 \cos\theta, 2 \sin\theta \right)} =\frac{- 12\cos\theta}{18\sin\theta}=\frac{- 2 \cos\theta}{3 \sin\theta}
The equation of tangent is,
y - y1 = m (x - x1)
y - 2 sin θ = -2 cos θ/3 sin θ(x - 3 cos θ)
3y sin θ - 6 sin2 θ = -2x cos θ + 6 cos2 θ
2x cos θ + 3y sin θ = 6 (cos2 θ + sin2 θ)
2x cos θ + 3y sin θ = 6
The equation of normal is,
y - y1 = -1/m (x - x1)
y - 2 sin θ = -3 sin θ/2 cos θ(x - 3 cos θ)
2y cos θ - 4 sin θ cos θ = 3x sin θ - 9 sin θ cos θ
3x sin θ - 2y cos θ - 5sin θ cos θ = 0
(xviii) y2 = 4ax at (x1, y1)
Solution:
We have,
y2 = 4ax
On differentiating both sides w.r.t. x, we get
2y dy/dx = 4a
dy/dx = 2a/y
At (x1, y1), we have
Slope of tangent = \left( \frac{dy}{dx} \right)_{\left( x_1 , y_1 \right)} =\frac{2a}{y_1} = m
The equation of tangent is,
y - y1 = m (x - x1)
y - y_1 = \frac{2a\left( x - x_1 \right)}{y_1}
y y1 - y12 = 2ax - 2a x1
y y1 - 4a x1 = 2ax - 2a x1
y y1 = 2ax + 2a x1
y y1 = 2a (x + x1)
The equation of normal is,
y - y1 = -1/m (x - x1)
y - y1 = -y1/2a (x - x1)
(xix) \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 at (√2a, b)
Solution:
We have,
\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1
On differentiating both sides w.r.t. x, we get
\frac{2x}{a^2} - \frac{2y}{b^2}\frac{dy}{dx} = 0
\frac{2y}{b^2}\frac{dy}{dx} = \frac{2x}{a^2}
dy/dx = x b2/y a2
Slope of tangent, m= \left( \frac{dy}{dx} \right)_{\left( \sqrt{2}a,b \right)} =\frac{\sqrt{2}a b^2}{b a^2}=\frac{\sqrt{2}b}{a}
The equation of tangent is,
y - y1 = m (x - x1)
y - b = √2b/a(x - √2a)
ay - ab = √2 bx - 2ab
√2 bx - ay = ab
\frac{\sqrt{2}x}{a} - \frac{y}{b} = 1
The equation of normal is,
y - y1 = -1/m (x - x1)
y - b = - a/√2b(x - √2a)
√2 by - √2 b2 = - ax + √2 a2
ax + √2 by = √2 b2 + √2 a2
ax/√2 + by = a2 + b2
Question 4. Find the equation of the tangent to the curve x = θ + sin θ, y = 1 + cos θ at θ = π/4.
Solution:
We have,
x = θ + sin θ, y = 1 + cos θ
\frac{dx}{d\theta} = 1 + \cos \theta and \frac{dy}{d\theta} = - \sin \theta
\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{- \sin \theta}{1 + \cos \theta}
Slope of tangent, m = \left( \frac{dy}{dx} \right)_{\theta = \frac{\pi}{4}}
= \frac{- \sin \frac{\pi}{4}}{1 + \cos \frac{\pi}{4}}
= \frac{\frac{- 1}{\sqrt{2}}}{1 + \frac{1}{\sqrt{2}}}
= \frac{-1}{\sqrt{2} + 1}
= \frac{-1}{\sqrt{2} + 1}\times\frac{\sqrt{2} - 1}{\sqrt{2} - 1}
= 1 - √2
Given, (x1, y1) = (π/4 + sin π/4, 1 + cos π/4) = (π/4 + 1/√2, 1 + 1/√2)
The equation of tangent is,
y - y1 = m (x - x1)
y - (1 + 1/√2) = (1 - √2) [x - (π/4 + 1/√2)]
y - 1 - 1/√2 = (1 - √2) (x - π/4 - 1/√2)
Question 5. Find the equation of the tangent and the normal to the following curve at the indicated points.
(i) x = θ + sin θ, y = 1 + cos θ at θ = π/2
Solution:
We have,
x = θ + sin θ and y = 1 + cos θ
dx/dθ = 1 + cos θ and dy/dθ = -sinθ
\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}
= \frac{- \sin\theta}{1 + \cos\theta}
Slope of tangent, m= \left( \frac{dy}{dx} \right)_{\theta = \frac{\pi}{2}} =\frac{- \sin\frac{\pi}{2}}{1 + \cos\frac{\pi}{2}}
= -1/(1 + 0)
= -1
Given, (x1, y1) = (π/2 + sin π/2, 1 + cos π/2) = (π/2 + 1, 1)
The equation of tangent is,
y - y1 = m (x - x1)
y - 1 = -1 (x - π/2 - 1)
2y - 2 = - 2x + π + 2
x + 2y - π - 4 = 0
The equation of normal is,
y - y1 = -1/m (x - x1)
y - 1 = 1 (x - π/2 -1)
2y - 2 = 2x - π - 2
2x - 2y = π
(ii) x = \frac{2 a t^2}{1 + t^2}, y = \frac{2 a t^3}{1 + t^2} at t = 1/2
Solution:
We have,
x = \frac{2 a t^2}{1 + t^2}, y = \frac{2 a t^3}{1 + t^2}
dx/dt = \frac{\left( 1 + t^2 \right)\left( 4at \right) - 2a t^2 \left( 2t \right)}{\left( 1 + t^2 \right)^2}
= \frac{4at}{\left( 1 + t^2 \right)^2}
dy/dt = \frac{\left( 1 + t^2 \right)6a t^2 - 2a t^3 \left( 2t \right)}{\left( 1 + t^2 \right)^2}
= \frac{6a t^2 + 2a t^4}{\left( 1 + t^2 \right)^2}
\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{\frac{6a t^2 + 2a t^4}{\left( 1 + t^2 \right)^2}}{\frac{4at}{\left( 1 + t^2 \right)^2}} = \frac{6a t^2 + 2a t^4}{4at}
Slope of tangent, m= \left( \frac{dy}{dx} \right)_{t = \frac{1}{2}} =\frac{\frac{3a}{2} + \frac{a}{8}}{2a}=\frac{13a}{8}(\frac{1}{2a})=\frac{13}{16}
Given, (x1, y1) = \left(\frac{2 a t^2}{1 + t^2},\frac{2 a t^3}{1 + t^2}\right)=\left( \frac{\frac{a}{2}}{1 + \frac{1}{4}}, \frac{\frac{a}{4}}{1 + \frac{1}{4}} \right) = \left( \frac{\frac{a}{2}}{\frac{5}{4}}, \frac{\frac{a}{4}}{\frac{5}{4}} \right) = \left( \frac{2a}{5}, \frac{a}{5} \right)
The equation of tangent is,
y - y1 = m (x - x1)
y - \frac{a}{5} = \frac{13}{16}\left( x - \frac{2a}{5} \right)
\frac{5y - a}{5} = \frac{13}{16}\left( \frac{5x - 2a}{5} \right)
5y - a = \frac{13}{16}\left( 5x - 2a \right)
80y - 16a = 65x - 26a
65x - 80y - 10a = 0
13x - 16y - 2a = 0
The equation of normal is,
y - y1 = -1/m (x - x1)
y - \frac{a}{5} = \frac{- 16}{13} \left( x - \frac{2a}{5} \right)
\frac{5y - a}{5} = \frac{- 16}{13}\left( \frac{5x - 2a}{5} \right)
5y - a = \frac{- 16}{13}\left( 5x - 2a \right)
65y - 13a = - 80x + 32a
80x + 65y - 45a = 0
16x + 13y - 9a = 0
(iii) x = at2, y = 2at at t = 1
Solution:
We have,
x = at2, y = 2at
dx/dt = 2at and dy/dt = 2a
\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{2a}{2at} = \frac{1}{t}
Slope of tangent, m= \left( \frac{dy}{dx} \right)_{t = 1} = 1
Given, (x1 , y1) = (a, 2a)
The equation of tangent is,
y - y1 = m (x - x1)
y - 2a = 1 (x - a)
y - 2a = x - a
x - y + a = 0
Equation of normal:
y - y1 = -1/m (x - x1)
y - 2a = - 1 (x - a)
y - 2a = - x + a
x + y = 3a
(iv) x = a sec t, y = b tan t at t
Solution:
We have,
x = a sec t, y = b tan t
dx/dt = a sect tant and dy/dt = b sec2t
\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{b \sec^2 t}{a \sec t \tan t} = \frac{b}{a}\cosec t
Slope of tangent, m = \left( \frac{dy}{dx} \right)_{t = t} =\frac{b}{a}\cosec t
Given (x1, y1) = (a sec t, b tan t)
The equation of tangent is,
y - y1 = m (x - x1)
y - b tan t = (b/a) cosec t (x - a sec t)
y - \frac{b \sin t}{\cos t} = \frac{b}{a \sin t}\left( x - \frac{a}{\cos t} \right)
\frac{y \cos t - b \sin t}{\cos t} = \frac{b}{a \sin t}\left( \frac{x \cos t - a}{\cos t} \right)
y \cos t - b \sin t = \frac{b}{a \sin t}\left( x \cos t - a \right)
ay sin t cos t - ab sin2 t = bx cos t - ab
bx cos t - ay sin t cos t - ab (1 - sin2 t) = 0
bx cos t - ay sin t cos t = ab cos2 t
On dividing by cos2 t, we get
bx sec t - ay tan t = ab
The equation of normal is,
y - y1 = -1/m (x - x1)
y - b tant = -a/b sint(x - asect)
y - b \frac{\sin t}{\cos t} = \frac{- a}{b}\sin t\left( x - \frac{a}{\cos t} \right)
\frac{y \cos t - b \sin t}{\cos t} = \frac{- a}{b}\sin t\left( \frac{x \cos t - a}{\cos t} \right)
ycost − bsint = − a/bsint(xcost − a)
by cos t - b2 sin t = - ax sin t cos t + a2 sin t
ax sin t cos t + by cos t = (a2 + b2) sin t
On dividing both sides by sin t, we get
ax cos t + by cot t = a2 + b2
(v) x = a(θ + sin θ), y = a(1 − cos θ) at θ
Solution:
We have,
x = a(θ + sin θ), y = a(1 − cos θ)
dx/dθ = a(1 + cosθ) and dy/dθ = asinθ
\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}
= \frac{a\sin\theta}{a\left( 1 + \cos\theta \right)}
= \frac{\sin\theta}{\left( 1 + \cos\theta \right)}
= \frac{2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{2 \cos^2 \frac{\theta}{2}}
= tan θ/2 . . . . (1)
Slope of tangent, m= \left( \frac{dy}{dx} \right)_\theta =\tan\frac{\theta}{2}
Given (x1, y1) = [a(θ + sin θ), a(1 − cos θ)]
The equation of tangent is,
y - y1 = m (x - x1)
y - a (1 - cos θ) = tan θ/2 [x - a (θ + sin θ)]
y − a(2sin2θ/2) = xtanθ/2 − aθtanθ/2 − atanθ/2sinθ
y - a\left( 2 \sin^2 \frac{\theta}{2} \right) = x\tan\frac{\theta}{2} - a\theta\tan\frac{\theta}{2} - a\frac{2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{2 \cos^2 \frac{\theta}{2}}2\sin\frac{\theta}{2}\cos\frac{\theta}{2}
y − 2asin2θ/2 =(x − aθ)tan θ/2 − 2asin2θ/2
y = (x - aθ) tan θ/2
The equation of normal is,
y - a (1 - cos θ) = -cot θ/2 [x - a (θ + sin θ)]
tanθ/2[y − a(2sin2θ/2)] = −x + aθ + asinθ
tanθ/2[y − a{2(1 − cos2θ/2)}] = −x + aθ + asinθ
tan θ/2 (y - 2a) + a (2sin θ/2 cosθ/2 = -x + aθ + a sinθ
tan θ/2 (y - 2a) + a sin θ = -x + aθ + a sin θ
tan θ/2 (y - 2a) = - x + aθ
tan θ/2 (y - 2a) + x - θ = 0
(vi) x = 3 cos θ − cos3 θ, y = 3 sin θ − sin3 θ
Solution:
We have,
x = 3 cos θ − cos3 θ, y = 3 sin θ − sin3 θ
dx/dθ = -3sin θ + 3 cos2θ sin θ and dy/dθ = 3 cos θ - 3 sin2θ cos θ
\frac{dy}{dx}=\frac{\frac{dy}{d \theta}}{\frac{dx}{d \theta}}
= \frac{3\cos \theta-3\sin^2 \theta\cos \theta}{-3\sin \theta+3\cos^2\theta \sin \theta}
= \frac{\cos \theta(1-\sin^2 \theta}{-\sin \theta(1-\cos^2 \theta)}
= cos3 θ/ -sin3 θ
= tan3 θ
So the equation of the tangent at θ is,
y - 3 sin θ + sin3 θ = -tan3 θ (x - 3 cos θ + cos3 θ)
4 (y cos3 θ - x sin3 θ) = 3 sin 4θ
So the equation of normal at θ is,
y - 3 sin θ + sin3 θ= (1/tan3 θ) (x - 3 cos θ + cos3 θ)
sin3 θ - x cos3 θ = 3sin4 θ - sin6 θ - 3cos4 θ + cos6 θ
Question 6. Find the equation of the normal to the curve x2 + 2y2 − 4x − 6y + 8 = 0 at the point whose abscissa is 2?
Solution:
Given that abscissa = 2. i.e., x = 2
x2 + 2y2 − 4x − 6y + 8 = 0 . . . . (1)
On differentiating both sides w.r.t. x, we get
2x + 4y dy/dx - 4 - 6 dy/dx = 0
dy/dx(4y - 6) = 4 - 2x
\frac{dy}{dx} = \frac{4 - 2x}{4y - 6} = \frac{2 - x}{2y - 3}
When x = 2, we get
4 + 2y2 - 8 - 6y + 8 = 0
2y2 – 6y + 4 = 0
y2 – 3y + 2 = 0
y = 2 or y = 1
m (tangent) at x = 2 is 0
Normal is perpendicular to tangent so, m1m2 = –1
m (normal) at x = 2 is 1/0, which is undefined.
The equation of normal is given by y – y1 = m (normal) (x – x1)
x = 2
Explore
Basic Arithmetic
Algebra
Geometry
Trigonometry & Vector Algebra
Calculus
Probability and Statistics
Practice