Question 1. Evaluate: ∫(x2 + x + 1)/(x2 - x) dx
Solution:
Given that I = ∫(x2 + x + 1)/(x2 - x) dx
= ∫ [1 + (2x + 1)/(x2 - x)]dx
= x + ∫(2x + 1)/(x2 - x) dx + c1
= x + I1 + c1 .......(i)
Now, I1 = ∫(2x + 1)/(x2 - x) dx
Let 2x + 1 = λ d/dx (x2 - x) + μ = λ(2x - 1) + μ
2x + 1 = (2λ)x - λ + μ
By comparing the coefficients of x, we get
2 = 2λ ⇒ λ = 1
-λ + μ = 1 ⇒ μ = 2
I1 = ∫ ((2x - 1) + 2)/(x2 - x) dx)
= ∫(2x - 1)/(x2 - x) dx + 2∫1/(x2 - x) dx
= ∫(2x - 1)/(x2 - x) dx + 2∫1/(x2 - 2x(1/2) + (1/2)2 - (1/2)2) dx
= ∫(2x - 1)/(x2 - x) dx + 2∫1/((x - 1/2)2 - (1/2)2) dx
= log|x2 - x| + 2 × \frac{1}{2(\frac{1}{2})} log|\frac{(x-\frac{1}{2}-\frac{1}{2})}{(x-\frac{1}{2}+\frac{1}{2})}|+c_1
As we know that ∫1/(x2 - a2) dx = 1/2a log|(x - a)/(x + a)| + c
So, I1 = log|x2 - x| + 2log|(x - 1)/x| + c2 ......(ii)
Now put the value of I1 in eq(i), we get
I = x + log|x2 - x| + 2log|(x - 1)/x| + c
Question 2. ∫ (x2 + x - 1)/(x2 + x - 6) dx
Solution:
Given that I = ∫ (x2 + x - 1)/(x2 + x - 6) dx
= ∫[1 + 5 /(x2 + x - 6)]dx
I = x + ∫5/(x2 + x - 6) dx + c1
Let us assume I1 = 5∫1/(x2 + x - 6) dx
I = x + I1 + c1 .....(i)
= 5∫ 1/(x2 + 2x(1/2) + (1/2)2 - (1/2)2 - 6) dx
= 5∫ 1/((x + 1/2)2 - (5/2)2dx
= 5 1/2(5/2) log|(x + 1/2 - 5/2)/(x + 1/2 + 5/2)| + c2
As we know that ∫ 1/(x2 - a2) dx = 1/2a log|(x - a)/(x + a)| + c
So, we get
I1 = log|(x - 2)/(x + 3)| + c2 .......(ii)
Now put the value of I1 in eq(i), we get
I = x + log|(x - 2)/(x + 3)| + c
Question 3. ∫ (1 - x2)/(x(1 - 2x)) dx
Solution:
Given that I = ∫ (1 - x2)/(x(1 - 2x)) dx
= ∫ (1 - x2)/(x - 2x2) dx
= ∫ (x2 - 1)/(2x2 - x) dx
= ∫ [1/2 + (x/2 - 1)/(2x2 - x)]dx
I = 1/2x + ∫(x/2 - 1)/(2x2 - x) dx + c1
Let us assume I1 = ∫(x/2 - 1)/(2x2 - x) dx
So, I = 1/2x + I1 + c1 .....(i)
Now, let x/2 -1 = λ d/dx (2x2 - x) + μ = λ(4x - 1) + μ
x/2 - 1 = (4λ)x - λ + μ
By comparing the coefficients of x, we get
1/2 = 4λ ⇒ λ = 1/8
-λ + μ = -1 ⇒ -(1/8) + μ = -1
μ = -7/8
I1 = ∫ (1/8(4x - 1) - 7/8)/(2x2 - x) dx
= 1/8 ∫(4x - 1)/(2x2 - x) dx - 7/8 ∫1/2(x2 - x/2)dx
= 1/8 ∫(4x - 1)/(2x2 - x) dx - 7/16 ∫1/(x2 - 2x(1/4) + (1/4)2 - (1/4)2) dx
= 1/8 ∫(4x - 1)/(2x2 - x) dx - 7/16 [1/((x - 1/4)2 - (1/4)2) dx
= 1/8 log|2x2 - x| - 7/16 × 1/2(1/4) log|(x - 1/4 - 1/4)/(x - 1/4 + 1/4)| + c2
As we know that ∫ 1/(x2 - a2) dx = 1/2a log|(x - a)/(x + a)| + c
So, we get
I1 = 1/8 log|x| + 1/8 log|2x - 1| - 7/8 log|1 - 2x| + 7/8 log2 + 7/8 log|x| + c2
I1 = log|x| - 3/4 log|1 - 2x| + c3 [Here, c3 = c2 + 7/8 log2]
Now put the value of I1 in eq(i), we get
I = 1/2x + log|x| - 3/4 log|1 - 2x| + c
Question 4. ∫(x2 + 1)/(x2 - 5x + 6)dx
Solution:
Given that I = ∫(x2 + 1)/(x2 - 5x + 6)dx
Now we convert I into proper rational function by dividing x2 + 1 by x2 - 5x + 6
So,
(x2 + 1)/(x2 - 5x + 6) = 1 + (5x - 5)/(x2 - 5x + 6) = 1 + (5x - 5)/((x - 2)(x - 3))
Let
(5x - 5)/((x - 2)(x - 3)) = A/(x - 2) + B/(x - 3)
So, we get A + B = 5 and 3A + 2B = 5
On solving both the equations we get A = -5 and B = 10
So, \frac{(x^2 + 1)}{(x^2 - 5x + 6)} = 1 - \frac{5}{(x-2)} + \frac{10}{(x - 3)}
Hence, ∫(x2 + 1)/((x + 1)2 (x + 3)) dx =∫dx - 5∫1/(x - 2) dx + 10∫x/(x - 3)
I = x - 5log|x - 2| + 10log|x - 3| + c
Question 5. ∫x2/(x2 + 7x + 10) dx
Solution:
Given that I = ∫x2/(x2 + 7x + 10) dx
= ∫ {1 - (7x + 10)/(x2 + 7x + 10)}dx
I = x - ∫(7x + 10)/(x2 + 7x + 10) dx + c1
Let us assume I1 = ∫(7x + 10)/(x2 + 7x + 10) dx
So, I = x - I1 + c1 .....(i)
Now let us assume 7x + 10 = λ d/dx (x2 + 7x + 10) + μ = λ(2x + 7) + μ
7x + 10 = (2λ)x + 7λ + μ
By comparing the coefficients of x, we get
7 = 2λ ⇒ λ = 7/2
7λ + μ = 10 ⇒ 7(7/2) + μ = 10μ = -29/2
So, I1 = ∫(7/2(2x + 7) - 29/2)/(x2 + 7x + 10) dx
= 7/2 ∫((2x + 7))/(x2 + 7x + 10) dx - 29/2∫1/(x2 + 2x(7/2) + (7/2)2 - (7/2)2 + 10) dx
= 7/2 ∫(2x + 7)/(x2 + 7x + 10) dx - 29/2 {1/((x + 7/2)2 - (3/2)2) dx
= 7/2 log|x2 + 7x + 10| - 29/2 × 1/2(3/2) log|(x + 7/2 - 3/2)/(x + 7/2 + 3/2)| + c2
As we know that ∫ 1/(x2 - a2) dx = 1/2a log|(x - a)/(x + a)| + c
So, we get
I1 = 7/2 log|x2 + 7x + 10| - 29/6 log|(x + 2)/(x + 5)| + c2
Now put the value of I1 in eq(i), we get
I = x - 7/2 log|x2 + 7x + 10| + 29/6 log|(x + 2)/(x + 5)| + c
Question 6. ∫(x2 + x + 1)/(x2 - x + 1) dx
Solution:
Given that l = ∫(x2 + x + 1)/(x2 - x + 1) dx
= ∫[1 + 2x/(x2 - x + 1)]dx
= x + ∫2x/(x2 - x + 1) dx + c1
Let us assume I1 = ∫2x/(x2 - x + 1) dx
So, I = x + I1 + c1 .....(i)
Now let 2x = λ d/dx (x2 - x + 1) + μ = λ(2x - 1) + μ
2x = (2λ) × -λ + μ
By comparing the coefficients of x, we get
2 = 2λ ⇒ λ = 1
-λ + μ = 0 ⇒ -1 + μ = 0
μ = 1
So, I1 = ∫((2x - 1) + 1)/(x2 - x + 1) dx
= ∫((2x - 1))/(x2 - x + 1) dx + ∫1/(x2 - 2x(1/2) + (1/2)2 - (1/2)2 + 1) dx
= ∫(2x - 1)/(x2 - x + 1) dx + ∫1/((x - 1/2)2 + (√3/2)2) dx
= log|x2 - x + 1| + 2/√3 tan-1((x - 1/2)/(√3/2)) + c2
As we know that, ∫1/(x2 + a2) dx = 1/a tan-1(x/a) + c
So, we get
I1 = log|x2 - x + 1| + 2/√3 tan-1((2x - 1)/√3) + c2
Now put the value of I1 in eq(i), we get
I = x + log|x2 - x + 1| + 2/√3 tan-1((2x - 1)/√3) + c
Question 7. ∫(x - 1)2/(x2 + 2x + 2) dx
Solution:
Given that, I = ∫(x - 1)2/(x2 + 2x + 2) dx
= ∫(x2 - 2x + 1)/(x2 + 2x + 2) dx
= ∫[1 - (4x + 1)/(x2 + 2x + 2)]dx
= x - ∫(4x + 1)/(x2 + 2x + 2) dx + c1
Let us assume l1 = ∫(4x + 1)/(x2 + 2x + 2) dx
So, I = x - I1 + c1 .....(i)
Now, let 4x + 1 = λ d/dx (x2 + 2x + 2) + μ
= λ(2x + 2) + μ = (2k)x + (2λ + μ)
By comparing the coefficients of x, we get
4 = 2λ ⇒ λ = 2
2λ + μ = 1 ⇒ 2(2) + μ = 1
μ = -3
l1 = ∫ (2(2x + 2) - 3)/(x2 + 2x + 2) dx
= 2∫ ((2x + 2))/(x2 + 2x + 2) dx - 3∫1/(x2 - 2x + (1)2 - (1)2 + 2) dx
= 2∫ (2x + 2)/(x2 + 2x + 2) dx - 3∫1/((x + 1)2 + (1)2) dx
As we know that, ∫1/(x2 + 1) dx = tan-1x + c
So, we get
l1 = 2log|x2 + 2x + 2| - 3tan-1(x + 1) + c2
Now put the value of I1 in eq(i), we get
I = x - 2log|x2 + 2x + 2| + 3tan-1(x + 1) + c
Question 8. ∫(x3 + x2 + 2x + 1)/(x2 - x + 1) dx
Solution:
Given that, I = ∫(x3 + x2 + 2x + 1)/(x2 - x + 1) dx
= ∫[x + 2 + (3x - 1)/(x2 - x + 1)]dx
= x2/2 + 2x + ∫(3x. -1)/(x2 - x + 1) dx + c1
Let us assume l1 = ∫(3x - 1)/(x2 - x + 1) dx
So, I = x2/2 + 2x + I1 + c1 .....(i)
Now, let 3x - 1 = λ d/dx (x2 - x + 1) + μ = λ(2x - 1) + μ
3x - 1 = (2λ)x - λ + μ
By comparing the coefficients of x, we get
3 = 2λ ⇒ λ = 3/2
-λ + μ = -1 ⇒ -(3/2) + μ = -1
μ = 1/2
So, I1 = ∫(3/2(2x - 1) + 1/2)/(x2 - x + 1) dx
= 3/2 ∫ ((2x - 1))/(x2 - x + 1) dx + 1/2 ∫1/(x2 - 2x(1/2) + (1/2)2 - (1/2)2 + 1) dx
= 3/2 ∫ (2x - 1)/(x2 - x + 1) dx + 1/2 ∫1/((x + 1/2)2 + (√3/2)2) dx
= 3/2 log|x2 - x + 1| + 1/2 × 2/√3 tan-1((x + 1/2)/(√3/2)) + c2
As we know that, ∫1/(x2 + a2) dx = 1/a tan-1(x/a) + c
So, we get
I1 = 3/2 log|x2 - x + 1| + 1/√3 tan-1((2x + 1)/√3) + c2
Now put the value of I1 in eq(i), we get
I = x2/2 + 2x + 3/2 log|x2 - x + 1| + 1/√3 tan-1((2x + 1)/√3) + c
Question 9. ∫(x2 (x4 + 4))/(x2 + 4) dx
Solution:
Given that, I = ∫(x2 (x4 + 4))/((x2 + 4)) dx
= ∫ (x6 + 4x2)/((x2 + 4)) dx
= ∫ [x4 - 4x2 + 20 - 80/(x2 + 4)]dx
= x5/5 - (4x3)/3 + 20x - 80 ∫1/(x2 + 4) dx + c1
Let us assume I1 = ∫1/(x2 + 4) dx
So, I = x5/5 - (4x3)/3 + 20x - 80I1 + c1 .....(i)
Now, I1 = ∫1/(x2 + (2)2) dx
As we know that, ∫1/(x2 + a2) dx = 1/a tan-1(x/a) + c
So, we get
I1 = 1/2 tan-1(x/2) + c2
Now put the value of I1 in eq(i), we get
I = x5/5 - (4x3)/3 + 20x - 80/2 tan-1(x/2) + c
I = x5/5 - (4x3)/3 + 20x - 40tan-1(x/2) + c
Question 10. ∫ x2/(x2 + 6x + 12) dx
Solution:
Given that, l = ∫ x2/(x2 + 6x + 12) dx
= ∫ [1 - (6x + 12)/(x2 + 6x + 12)]dx
= x - ∫(6x + 12)/(x2 + 6x + 12) dx + c1
Let us assume I1 = ∫(6x + 12)/(x2 + 6x + 12) dx
So, I = x - I1 + c1 .....(i)
Now, let 6x + 12 = λ d/dx (x2 + 6x + 12) + μ = λ(2x + 6) + μ
6x + 12 = (2λ)x + 6λ + μ
By comparing the coefficients of the power of x, we get
6 = 2λ ⇒ λ = 3
6λ + μ = 12
6(3) + μ = 12
μ = -6
So, l1 = ∫(3(2x + 6) - 6)/(x2 + 6x + 12) dx
=3∫ ((2x + 6))/(x2 + 6x + 12) dx - 6∫1/(x2 + 2x(3) + (3)2 - (3)2 + 12) dx
= 3∫ (2x + 6)/(x2 + 6x + 12) dx + 6∫1/((x + 3)2 + (√3)2) dx
As we know that, ∫1/(x2 + a2) dx = 1/2 tan-1(x/a) + c
So, we get
I1 = 3log|x2 + 6x + 12| + 6/√3 tan-1((x + 3)/√3) + c2
I1 = 3log|x2 + 6x + 12| + 2√3 tan-1((x + 3)/√3) + c2
Now put the value of I1 in eq(i), we get
l = x - 3log|x2 + 6x + 12| + 2√3 tan-1((x + 3)/√3) + c
Summary
Indefinite Integration: The process of finding a function F(x) whose derivative is the given function f(x).
General Form: ∫ f(x) dx = F(x) + C, where F'(x) = f(x) and C is the constant of integration.
Basic Integration Rules:
- ∫ xn dx = (xn+1)/(n+1) + C, for n ≠ -1
- ∫ 1/x dx = ln|x| + C
- ∫ ex dx = ex + C
- ∫ sin x dx = - cos x + C
- ∫ cos x dx = sin x + C
Integration Techniques:
- Substitution Method
- Integration by Parts
- Partial Fraction Decomposition
Trigonometric Integrals: Special techniques for integrating products and powers of trigonometric functions.
Explore
Basic Arithmetic
Algebra
Geometry
Trigonometry & Vector Algebra
Calculus
Probability and Statistics
Practice