Class 12 RD Sharma Solutions - Chapter 19 Indefinite Integrals - Exercise 19.27
Last Updated :
03 Sep, 2024
Question 1. ∫eax cosbx dx
Solution:
We have,
I = ∫eax cosbx dx
Using integration by parts, we get,
I = eax (sinbx)/b − a∫eax (sinbx)/b dx
I = eax (sinbx)/b − (a/b)[−eax (cosbx)/b + a∫eax (cosbx)/b dx]
I = eax (sinbx)/b + (a/b2) eax (cosbx) − (a2/b2)∫eax (cosbx) dx
I = (eax/b2) [b sinbx + a cos bx] + (a2/b2) I + c
(a2+b2)I/b2 = (eax/b2) [b sinbx + a cos bx] + c
Therefore, I = eax [b sinbx + a cos bx]/(a2+b2) + c
Question 2. ∫eax sin(bx+c)dx
Solution:
We have,
I = ∫eax sin(bx+c)dx
Using integration by parts, we get,
I = − eax cos(bx+c)/b + ∫aeax cos(bx+c)/b dx
I = (−1/b) eax cos(bx+c) + (a/b) ∫eax cos(bx+c) dx
I = (−1/b) eax cos(bx+c) + (a/b) [eax sin(bx+c)/b − ∫aeax sin(bx+c)/b dx]
I = (−1/b) eax cos(bx+c) + (a/b2) eax sin(bx+c) − (a2/b2)∫eax sin(bx+c) dx
I = (eax/b2) [a sin(bx+c) − b cos(bx+c)] − (a2/b2) I + c
(a2+b2) I/b2 = (eax/b2) [a sin(bx+c) − b cos(bx+c)] + c
Therefore, I = (eax)[a sin(bx+c)−b cos(bx+c)]/(a2+b2) + c
Question 3. ∫cos(logx) dx
Solution:
We have,
I = ∫cos(logx) dx
Let log x = t, so we get, (1/x)dx = dt
=> dx = xdt
=> dx = et dt
So, the equation becomes,
I = ∫et cost dt
Using integration by parts, we get,
I = et sint − ∫et sint dt
I = et sint − [−et cost + ∫et cost dt]
I = et sint + et cost − I + c
2I = et (sint+cost) + c
I = et (sint+cost)/2 + c
Therefore, I = x[cos(logx) + sin(logx)]/2 + c
Question 4. ∫e2x cos(3x+4)dx
Solution:
We have,
I = ∫e2x cos(3x+4)dx
Using integration by parts, we get,
I = e2x sin(3x+4)/3 − ∫2e2x sin(3x+4)/3 dx
I = (1/3) e2x sin(3x+4) − (2/3) ∫e2x sin(3x+4) dx
I = (1/3) e2x sin(3x+4) − (2/3) [−e2x cos(3x+4)/3 + ∫2e2x cos(3x+4)/3 dx]
I = (1/3) e2x sin(3x+4) + (2/9) e2x cos(3x+4) − (4/9)∫2e2x cos(3x+4) dx]
I = (e2x/9) [2 cos(3x+4)−3 sin(3x+4)] − (4/9)I + c
(13/9)I = (e2x/9) [2 cos(3x+4)−3 sin(3x+4)] + c
Therefore, I = e2x[2 cos(3x+4)−3 sin(3x+4)]/13 + c
Question 5. ∫e2x sinx cosx dx
Solution:
We have,
I = ∫e2x sinx cosx dx
I = (1/2)∫e2x (2sinx cosx) dx
I = (1/2)∫e2x sin2x dx
Using integration by parts, we get,
I = (1/2)[−e2x (cos2x)/2 + ∫2e2x (cos2x)/2 dx]
2I = −e2x (cos2x)/2 + ∫e2x (cos2x)dx
2I = −e2x (cos2x)/2 + [e2x (sin2x)/2 − ∫2e2x (sin2x)/2 dx]
2I = −e2x (cos2x)/2 + e2x (sin2x)/2 − 2I + c
4I = e2x(sin2x−cos2x)/2 + c
Therefore, I = e2x(sin2x−cos2x)/8 + c
Question 6. ∫e2x sinx dx
Solution:
We have,
I = ∫e2x sinx dx
Using integration by parts, we get,
I = e2x(−cosx) + ∫2e2x cosx dx
I = −e2x cosx + 2[e2x sinx − 2∫e2x sinx dx]
I = −e2x cosx + 2e2x sinx − 4∫e2x sinx dx
I = e2x(2sinx−cosx) − 4I + c
5I = e2x(2sinx−cosx) + c
Therefore, I = e2x(2sinx−cosx)/5 + c
Question 7. ∫e2x sin(3x+1) dx
Solution:
We have,
I = ∫e2x sin(3x+1) dx
Using integration by parts, we get,
I = −e2x cos(3x+1)/3 + ∫2e2x cos(3x+1)/3 dx
I = −(1/3) e2x cos(3x+1) + (2/3) [e2x sin(3x+1)/3 − ∫2e2x sin(3x+1)/3 dx]
I = −(1/3) e2x cos(3x+1) + (2/3) [e2x sin(3x+1)/3 − (2/3)∫e2x sin(3x+1)dx]
I = −(1/3) e2x cos(3x+1) + (2/9) e2x sin(3x+1) − (4/9)I + c
(13/9)I = e2x [2sin(3x+1)−3cos(3x+1)]/9 + c
Therefore, I = e2x [2sin(3x+1)−3cos(3x+1)]/13 + c
Question 8. ∫ex sin2x dx
Solution:
We have,
I = ∫ex sin2x dx
I = (1/2)∫ex (1−cos2x)dx
I = (1/2)∫ex dx − (1/2)∫ex cos2x dx
Let I1 = ∫ex cos2x dx. So, our equation becomes,
I = (1/2)∫ex dx − (1/2) I1 . . . . (1)
Using integration by parts in I1, we get,
I1 = ex (sin2x)/2 − ∫ex (sin2x)/2 dx
I1 = ex (sin2x)/2 − (1/2)[−ex (cos2x)/2 + ∫ex (cos2x)/2 dx
I1 = ex (sin2x)/2 + ex (cos2x)/4 − (1/4)∫ex cos2x dx
I1 = ex[2sin2x+cos2x)]/4 − (1/4) I1
(5/4)I1 = ex[2sin2x+cos2x)]/4
I1 = ex[2sin2x+cos2x)]/5 . . . . (2)
Putting (2) in (1), we get,
I = (1/2)∫ex − (1/2) (1/5) ex[2sin2x+cos2x)] + c
Therefore, I = ex/2 − ex[2sin2x+cos2x)]/10 + c
Question 9. ∫(1/x3) sin(logx) dx
Solution:
We have,
I = ∫(1/x3) sin(logx) dx
Let logx = t, so we have, (1/x)dx = dt
=> dx = xdt
=> dx = et dt
So, the equation becomes,
I = ∫(1/e3t) (sint) et dt
I = ∫e−2t sint dt
Using integration by parts, we get,
I = −e−2t cost − ∫2e−2t cost dt
I = −e−2t cost − 2[e−2t sint + ∫2e−2t sint]
I = −e−2t cost − 2e−2t sint − 4∫e−2t sint
I = −e−2t[cost+2sint] − 4I + c
5I = −e−2t[cost+2sint] + c
I = −e−2t[cost+2sint]/5 + c
I = −e−2logx[cos(logx)+2sin(logx)]/5 + c
I = −x-2[cost+2sint]/5 + c
Therefore, I = −[cost+2sint]/5x2 + c
Question 10. ∫e2x cos2x dx
Solution:
We have,
I = ∫e2x cos2x dx
I = (1/2) ∫e2x (1+cos2x) dx
I = (1/2) ∫e2x dx + (1/2) ∫e2x cos2x dx
Let I1 = ∫e2x cos2x dx. So, our equation becomes,
I = (1/2)∫e2x dx + (1/2) I1 . . . . (1)
Using integration by parts in I1, we get,
I1 = e2x (sin2x)/2 − ∫2e2x (sin2x)/2 dx
I1 = e2x (sin2x)/2 − ∫e2x sin2x dx
I1 = e2x (sin2x)/2 − [−e2x (cos2x)/2 + ∫2e2x (cos2x)/2 dx]
I1 = e2x (sin2x)/2 + e2x (cos2x)/2 − ∫e2x (cos2x) dx
I1 = e2x(sin2x+cos2x)/2 − I1
2I1 = e2x(sin2x+cos2x)/2
I1 = e2x(sin2x+cos2x)/4 . . . . (2)
Putting (2) in (1), we get,
I = (1/2)∫e2x dx + (1/2) (1/4) [e2x(sin2x+cos2x)]
Therefore, I = (1/4) e2x + (1/8) [e2x(sin2x+cos2x)] + c
Question 11. ∫e−2x sinx dx
Solution:
We have,
I = ∫e−2x sinx dx
Integrating by parts, we get,
I = −e−2x cosx − ∫2e−2x cosx dx
I = −e−2x cosx − 2[e−2x sinx+∫2e−2x sinx dx]
I = −e−2x cosx − 2e−2x sinx − 4∫e−2x sinx dx
I = −e−2x(cosx+2sinx) − 4I + c
5I = −e−2x(cosx+2sinx) + c
Therefore, I = −e−2x(cosx+2sinx)/5 + c
Question 12. ∫x^2 e^{x^3} cosx^3 dx
Solution:
We have,
I = ∫x^2 e^{x^3} cosx^3 dx
Let x3 = t, so we have, 3x2dx = dt
So, the equation becomes,
I = (1/3) ∫et cost dt
Integrating by parts, we get,
I = (1/3) [et sint − ∫et sint dt]
I = (1/3) [et sint − (−et cost + ∫et cost dt)]
I = (1/3) et sint + (1/3) et cost − (1/3) ∫et cost dt
I = et[sint+cost]/3 − I + c
2I = et[sint+cost]/3 + c
I = et[sint+cost]/6 + c
Therefore, I = \frac{e^{x^3}(sinx^3+cosx^3)}{6} + c
Summary
Exercise 19.27 in RD Sharma's Class 12 Chapter 19 on Indefinite Integrals focuses on integrating rational functions where the denominator is a cubic polynomial (third-degree). The key techniques used in solving these integrals include:
- Partial fraction decomposition
- Factoring the denominator
- Recognizing standard integral forms
- Logarithmic integration
- Long division of polynomials (when degree of numerator ≥ degree of denominator)
These problems require a good understanding of algebraic manipulation, factorization of polynomials, and various integration techniques. Students should be comfortable with complex fractions and identifying the most efficient method for each problem.
Explore
Basic Arithmetic
Algebra
Geometry
Trigonometry & Vector Algebra
Calculus
Probability and Statistics
Practice