Chapter 20 of RD Sharma's Class 12 textbook focuses on Definite Integrals a fundamental concept in calculus. This chapter introduces the concept of definite integrals including their properties, evaluation, and applications. Understanding definite integrals is crucial for solving problems involving the areas under curves and physical quantities in mathematics.
Definite Integrals
The Definite integrals are used to compute the exact area under a curve between the two specific points on the x-axis. They are defined as the limit of a Riemann sum as the number of the subdivisions approaches infinity. The value of a definite integral is obtained using the Fundamental Theorem of the Calculus which connects differentiation and integration. This provides a powerful tool for evaluating and interpreting the accumulated quantities.
Evaluate the following definite integrals:
Question 1. \int_{4}^{9} \frac{1}{\sqrt{x}}dx
Solution:
We have,
I = \int_{4}^{9} \frac{1}{\sqrt{x}}dx
I = \left[\frac{x^{\frac{-1}{2}+1}}{\frac{-1}{2}+1}\right]^9_4
I = \left[\frac{x^{\frac{1}{2}}}{\frac{1}{2}}\right]^9_4
I = \left[2\sqrt{x}\right]^9_4
I = 2[√9 - √4 ]
I = 2 (3 − 2)
I = 2 (1)
I = 2
Therefore, the value of \int_{4}^{9} \frac{1}{\sqrt{x}}dx is 2.
Question 2. \int_{-2}^{3} \frac{1}{x+7}dx
Solution:
We have,
I = \int_{-2}^{3} \frac{1}{x+7}dx
I = \left[log(x+7)\right]^3_{-2}
I = log (3 + 7) − log (−2 + 7)
I = log 10 − log 5
I = log\frac{10}{5}
I = log 2
Therefore, the value of \int_{-2}^{3} \frac{1}{x+7}dx is log 2.
Question 3. \int_{0}^{\frac{1}{2}} \frac{1}{\sqrt{1-x^2}}dx
Solution:
We have,
I = \int_{0}^{\frac{1}{2}} \frac{1}{\sqrt{1-x^2}}dx
Let x = sin t, so we have,
=> dx = cos t dt
Now, the lower limit is,
=> x = 0
=> sin t = 0
=> t = 0
Also, the upper limit is,
=> x = 1/2
=> sin t = 1/2
=> t = π/6
So, the equation becomes,
I = \int_{0}^{\frac{\pi}{6}} \frac{1}{\sqrt{1-sin^2t}}costdt
I = \int_{0}^{\frac{\pi}{6}} \frac{1}{\sqrt{cos^2t}}costdt
I = \int_{0}^{\frac{\pi}{6}} (\frac{1}{cost})costdt
I = \int_{0}^{\frac{\pi}{6}} 1dt
I = \left[t\right]_0^{\frac{\pi}{6}}
I = π/6 - 0
I = π/6
Therefore, the value of \int_{0}^{\frac{1}{2}} \frac{1}{\sqrt{1-x^2}}dx is π/6.
Question 4. \int_{0}^{1} \frac{1}{1+x^2}dx
Solution:
We have,
I = \int_{0}^{1} \frac{1}{1+x^2}dx
I = \left[tan^{-1}x\right]_0^1
I = tan^{-1}1-tan^{-1}0
I = \frac{\pi}{4}-0
I = π/4
Therefore, the value of \int_{0}^{1} \frac{1}{1+x^2}dx is π/4.
Question 5. \int_{2}^{3} \frac{x}{x^2+1}dx
Solution:
We have,
I = \int_{2}^{3} \frac{x}{x^2+1}dx
Let x2 + 1 = t, so we have,
=> 2x dx = dt
=> x dx = dt/2
Now, the lower limit is, x = 2
=> t = x2 + 1
=> t = (2)2 + 1
=> t = 4 + 1
=> t = 5
Also, the upper limit is, x = 3
=> t = x2 + 1
=> t = (3)2 + 1
=> t = 9 + 1
=> t = 10
So, the equation becomes,
I = \int_{5}^{10} \frac{1}{2t}dt
I = \frac{1}{2}\int_{5}^{10} \frac{1}{t}dt
I = \frac{1}{2}\left[logt\right]^{10}_5
I = 1/2[log10 - log5]
I = 1/2[log10/5]
I = 1/2[log2]
I = log√2
Therefore, the value of \int_{2}^{3} \frac{x}{x^2+1}dx is log√2.
Question 6. \int_{0}^{\infty} \frac{1}{a^2+b^2x^2}dx
Solution:
We have,
I = \int_{0}^{\infty} \frac{1}{a^2+b^2x^2}dx
I = \int_{0}^{\infty} \frac{1}{b^2}\left(\frac{1}{\frac{a^2}{b^2}+x^2}\right)dx
I = \frac{1}{b^2}\int_{0}^{\infty}\frac{1}{\frac{a^2}{b^2}+x^2}dx
I = \frac{1}{b^2}\left[\frac{b}{a}tan^{-1}\frac{bx}{a}\right]^{\infty}_{0}
I = \frac{1}{ab}\left[tan^{-1}\frac{bx}{a}\right]^{\infty}_{0}
I = 1/ab[tan-1∞ - tan-10]
I = 1/ab[π/2 - 0]
I = 1/ab[π/2]
I = π/2ab
Therefore, the value of \int_{0}^{\infty} \frac{1}{a^2+b^2x^2}dx is π/2ab.
Question 7. \int_{-1}^{1} \frac{1}{1+x^2}dx
Solution:
We have,
I = \int_{-1}^{1} \frac{1}{1+x^2}dx
I = \left[tan^{-1}x\right]_{-1}^{1}
I = [tan-11 - tan-1(-1)]
I = [π/4 - (-π/4)]
I = [π/4 + π/4]
I = 2π/4
I = π/2
Therefore, the value of \int_{-1}^{1} \frac{1}{1+x^2}dx is π/2.
Question 8. \int_{0}^{\infty} e^{-x}dx
Solution:
We have,
I = \int_{0}^{\infty} e^{-x}dx
I = \left[-e^{-x}\right]^{\infty}_{0}
I = -e-∞ - (-e0)
I = − 0 + 1
I = 1
Therefore, the value of \int_{0}^{\infty} e^{-x}dx is 1.
Question 9. \int_{0}^{1} \frac{x}{x+1}dx
Solution:
We have,
I = \int_{0}^{1} \frac{x}{x+1}dx
I = \int_{0}^{1} \frac{(x+1)-1}{x+1}dx
I = \int_{0}^{1} \frac{x+1}{x+1}dx-\int_{0}^{1}\frac{1}{x+1}dx
I = \int_{0}^{1} 1dx-\int_{0}^{1}\frac{1}{x+1}dx
I = \left[x\right]^1_0-\left[log(x+1)\right]^1_0
I = [1 − 0] − [log(1 + 1) − log(0 + 1)]
I = 1 − [log2 − log1]
I = 1 - log2/1
I = 1 − log 2
I = log e − log 2
I = loge/2
Therefore, the value of \int_{0}^{1} \frac{x}{x+1}dx is loge/2.
Question 10. \int_{0}^{\frac{\pi}{2}} (sinx+cosx)dx
Solution:
We have,
I = \int_{0}^{\frac{\pi}{2}} (sinx+cosx)dx
I = \int_{0}^{\frac{\pi}{2}} (sinx)dx+\int_{0}^{\frac{\pi}{2}}(cosx)dx
I = \left[-cosx\right]_{0}^{\frac{\pi}{2}}+\left[sinx\right]_{0}^{\frac{\pi}{2}}
I = [-cosπ/2 + cos0] + [sinπ/2 - sin0]
I = [−0 + 1] + 1
I = 1 + 1
I = 2
Therefore, the value of \int_{0}^{\frac{\pi}{2}} (sinx+cosx)dx is 2.
Question 11. \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} cotxdx
Solution:
We have,
I = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} cotxdx
I = \left[log(sinx)\right]_{\frac{\pi}{4}}^{\frac{\pi}{2}}
I = log(sinπ/2) - log(sinπ/4)
I = log1 - log1/√2
I = log\frac{1}{\frac{1}{\sqrt{2}}}
I = log√2
Therefore, the value of \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} cotxdx is log√2.
Question 12. \int_{0}^{\frac{\pi}{4}} secxdx
Solution:
We have,
I = \int_{0}^{\frac{\pi}{4}} secxdx
I = \left[log(secx+tanx)\right]^{\frac{\pi}{4}}_0
I = log(secπ/4 + tanπ/4 - log(sec0 + tan0)
I = log(√2 + 1) - log(1 + 0)
I = log(\frac{\sqrt{2}+1}{1})
I = log(√2 + 1)
Therefore, the value of \int_{0}^{\frac{\pi}{4}} secxdx is log(√2 + 1).
Question 13. \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} cosecxdx
Solution:
We have,
I = \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} cosecxdx
I = \left[log|cosecx-cotx|\right]_{\frac{\pi}{6}}^{\frac{\pi}{4}}
I = [log|cosecπ/4 - cotπ/4|] - [log|cosecπ/6 - cotπ/6|]
I = [log|√2 - 1|] - [log|2 - √3|]
I = log(\frac{\sqrt{2}-1}{2-\sqrt{3}})
Therefore, the value of \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} cosecxdx is log(\frac{\sqrt{2}-1}{2-\sqrt{3}}) .
Question 14. \int_{0}^{1} \frac{1-x}{1+x}dx
Solution:
We have,
I = \int_{0}^{1} \frac{1-x}{1+x}dx
Let x = cos 2t, so we have,
=> dx = –2 sin 2t dt
Now, the lower limit is,
=> x = 0
=> cos 2t = 0
=> 2t = π/2
=> t = π/4
Also, the upper limit is,
=> x = 1
=> cos 2t = 1
=> 2t = 0
=> t = 0
So, the equation becomes,
I = \int_{\frac{\pi}{4}}^{0} \frac{1-cos2t}{1+cos2t}(-2sin2t)dt
I = \int_{\frac{\pi}{4}}^{0}\frac{2sin^2t}{2cos^2t}(-2sin2t)dt
I = \int^{\frac{\pi}{4}}_{0}\frac{sin^2t}{cos^2t}(2sin2t)dt
I = \int^{\frac{\pi}{4}}_{0}\frac{sin^2t}{cos^2t}(4sintcost)dt
I = \int^{\frac{\pi}{4}}_{0}\frac{4sin^3t}{cost}dt
Let cos t = z, so we have,
=> – sin t dt = dz
=> sin t dt = – dz
Now, the lower limit is,
=> t = 0
=> z = cos t
=> z = cos 0
=> z = 1
Also, the upper limit is,
=> t = π/4
=> z = cos t
=> z = cos π/4
=> z = 1/√2
So, the equation becomes,
I = \int^{\frac{\pi}{4}}_{0}\frac{4sin^2t(sint)}{cost}dt
I = \int^{\frac{1}{\sqrt{2}}}_{1}\frac{-4(1-z^2)}{z}dz
I = -4\int^{\frac{1}{\sqrt{2}}}_{1}\frac{1-z^2}{z}dz
I = -4\int^{\frac{1}{\sqrt{2}}}_{1}(\frac{1}{z}-\frac{z^2}{z})dz
I = -4\int^{\frac{1}{\sqrt{2}}}_{1}(\frac{1}{z}-z)dz
I = -4\left[logz-\frac{z^2}{2}\right]^{\frac{1}{\sqrt{2}}}_1
I = -4[(log1/√2 - 1/2(2)) - (log1 - 1/2)]
I = -4[(log1/√2 - 1/4) - (0 - 1/2)]
I = -4[log1/√2 - 1/4 - 0 + 1/2]
I = -4[-log√2 + 1/4]
I = 4log√2 - 1
I = 4 × 1/2log2 - 1
I = 2log2 - 1
Therefore, the value of \int_{0}^{1} \frac{1-x}{1+x}dx is 2log2 - 1.
Question 15. \int_{0}^{\pi} \frac{1}{1+sinx}dx
Solution:
We have,
I = \int_{0}^{\pi} \frac{1}{1+sinx}dx
I = \int_{0}^{\pi} \frac{1-sinx}{(1+sinx)(1-sinx)}dx
I = \int_{0}^{\pi} \frac{1-sinx}{1-sin^2x}dx
I = \int_{0}^{\pi} \frac{1-sinx}{cos^2x}dx
I = \int_{0}^{\pi}\frac{1}{cos^2x}-\frac{sinx}{cos^2x}dx
I = \int_{0}^{\pi}sec^2x-\frac{sinx}{cosx(cosx)}dx
I = \int_{0}^{\pi}(sec^2x-tanxsecx)dx
I = \int_{0}^{\pi}sec^2xdx-\int_{0}^{\pi}tanxsecxdx
I = \left[tanx\right]^{\pi}_0-\left[secx\right]^{\pi}_0
I = [tan π – tan0] – [sec π – sec 0]
I = [0 – 0] – [–1 – 1]
I = 0 – (–2)
I = 2
Therefore, the value of \int_{0}^{\pi} \frac{1}{1+sinx}dx is 2.
Question 16. \int_{\frac{-\pi}{4}}^{\frac{\pi}{4}} \frac{1}{1+sinx}dx
Solution:
We have,
I = \int_{\frac{-\pi}{4}}^{\frac{\pi}{4}} \frac{1}{1+sinx}dx
I = \int_{\frac{-\pi}{4}}^{\frac{\pi}{4}} \frac{1-sinx}{(1+sinx)(1-sinx)}dx
I = \int_{\frac{-\pi}{4}}^{\frac{\pi}{4}} \frac{1-sinx}{1-sin^2x}dx
I = \int_{\frac{-\pi}{4}}^{\frac{\pi}{4}} \frac{1-sinx}{cos^2x}dx
I = \int_{\frac{-\pi}{4}}^{\frac{\pi}{4}}\frac{1}{cos^2x}-\frac{sinx}{cos^2x}dx
I = \int_{\frac{-\pi}{4}}^{\frac{\pi}{4}}sec^2x-\frac{sinx}{cosx(cosx)}dx
I = \int_{\frac{-\pi}{4}}^{\frac{-\pi}{4}}(sec^2x-tanxsecx)dx
I = \int_{\frac{-\pi}{4}}^{\frac{-\pi}{4}}sec^2xdx-\int_{\frac{-\pi}{4}}^{\frac{\pi}{4}}tanxsecxdx
I = \left[tanx\right]^{\frac{\pi}{4}}_{\frac{-\pi}{4}}-\left[secx\right]^{\frac{\pi}{4}}_{\frac{-\pi}{4}}
I = \left[tanx\right]^{\frac{\pi}{4}}_{\frac{-\pi}{4}}-\left[secx\right]^{\frac{\pi}{4}}_{\frac{-\pi}{4}}
I = [tan π/4 – tan(–π/4)] – [sec π/4 – sec (–π/4)]
I = [1 – (–1)] – [sec π/4 – sec (π/4)]
I = 2 – 0
I = 2
Therefore, the value of \int_{\frac{-\pi}{4}}^{\frac{\pi}{4}} \frac{1}{1+sinx}dx is 2.
Question 17. \int_{0}^{\frac{\pi}{2}} cos^2xdx
Solution:
We have,
I = \int_{0}^{\frac{\pi}{2}} cos^2xdx
I = \int_{0}^{\frac{\pi}{2}} (\frac{1+cos2x}{2})dx
I = \frac{1}{2}\int_{0}^{\frac{\pi}{2}} (1+cos2x)dx
I = \frac{1}{2}\int_{0}^{\frac{\pi}{2}}1dx+\frac{1}{2}\int_{0}^{\frac{\pi}{2}}cos2xdx
I = \frac{1}{2}\left[x\right]^{\frac{\pi}{2}}_0+\frac{1}{2}\left[\frac{sin2x}{2}\right]^{\frac{\pi}{2}}_0
I = \frac{1}{2}\left[x\right]^{\frac{\pi}{2}}_0+\frac{1}{4}\left[sin2x\right]^{\frac{\pi}{2}}_0
I = 1/2[π/2 - 0] + 1/4[sinπ - sin0]
I = 1/2[π/2] + 1/4[0 - 0]
I = π/4
Therefore, the value of \int_{0}^{\frac{\pi}{2}} cos^2xdx is π/4.
Question 18. \int_{0}^{\frac{\pi}{2}} cos^3xdx
Solution:
We have,
I = \int_{0}^{\frac{\pi}{2}} cos^3xdx
I = \int_{0}^{\frac{\pi}{2}} \frac{cos3x+3cosx}{4}dx
I = \frac{1}{4}\int_{0}^{\frac{\pi}{2}} (cos3x+3cosx)dx
I = \frac{1}{4}\int_{0}^{\frac{\pi}{2}} cos3xdx+\frac{3}{4}\int_{0}^{\frac{\pi}{2}}cosxdx
I = \frac{1}{4}\left[\frac{sin3x}{3}\right]^{\frac{\pi}{2}}_0+\frac{3}{4}[sinx]^{\frac{\pi}{2}}_{0}
I = \frac{1}{12}\left[sin3x\right]^{\frac{\pi}{2}}_0+\frac{3}{4}[sinx]^{\frac{\pi}{2}}_{0}
I = 1/12 [-1 - 0] + 3/4[1 - 0]
I = 3/4 - 1/12
I = (9 - 1)/12
I = 8/12
I = 2/3
Therefore, the value of \int_{0}^{\frac{\pi}{2}} cos^3xdx is 2/3.
Question 19. \int_{0}^{\frac{\pi}{6}} cosxcos2xdx
Solution:
We have,
I = \int_{0}^{\frac{\pi}{6}} cosxcos2xdx
I = \frac{1}{2}\int_{0}^{\frac{\pi}{6}} 2cosxcos2xdx
I = \frac{1}{2}\int_{0}^{\frac{\pi}{6}} (cos3x + cosx)dx
I = \frac{1}{2}\int_{0}^{\frac{\pi}{6}}cos3xdx + \frac{1}{2}\int_{0}^{\frac{\pi}{6}}cosxdx
I = \frac{1}{2}\left[\frac{sin3x}{3}\right]^{\frac{\pi}{6}}_0 + \frac{1}{2}\left[sinx\right]^{\frac{\pi}{6}}_0
I = \frac{1}{6}\left[sin3x\right]^{\frac{\pi}{6}}_0 + \frac{1}{2}\left[sinx\right]^{\frac{\pi}{6}}_0
I = 1/6[sinπ/2 - sin0] + 1/2[sinπ/6 - sin0]
I = 1/6[1 - 0] + 1/2[1/2 - 0]
I = 1/6 + 1/4
I = (4 + 6)/24
I = 10/24
I = 5/12
Therefore, the value of \int_{0}^{\frac{\pi}{6}} cosxcos2xdx is 5/12.
Question 20. \int_{0}^{\frac{\pi}{2}} sinxsin2xdx
Solution:
We have,
I = \int_{0}^{\frac{\pi}{2}} sinxsin2xdx
I = \frac{1}{2}\int_{0}^{\frac{\pi}{2}} 2sinxsin2xdx
I = \frac{1}{2}\int_{0}^{\frac{\pi}{2}} (cosx - cos3x)dx
I = \frac{1}{2}\int_{0}^{\frac{\pi}{2}}cosxdx - \frac{1}{2}\int_{0}^{\frac{\pi}{2}}cos3xdx
I = \frac{1}{2}\left[sinx\right]^{\frac{\pi}{2}}_0-\frac{1}{2}\left[\frac{sin3x}{3}\right]^{\frac{\pi}{2}}_0
I = \frac{1}{2}\left[sinx\right]^{\frac{\pi}{2}}_0-\frac{1}{6}[sin3x]^{\frac{\pi}{2}}_0
I = 1/2[sinπ/2 - sin0] - 1/6[sin3π/2 - sin0]
I = 1/2[1 - 0] - 1/6[-1 - 0]
I = 1/2 - 1/6(-1)
I = 1/2 + 1/6
I = (6 + 2)/12
I = 8/12
I = 2/3
Therefore, the value of \int_{0}^{\frac{\pi}{2}} sinxsin2xdx is 2/3.
Question 21. \int_{\frac{\pi}{3}}^{\frac{\pi}{4}} (tanx+cotx)^2dx
Solution:
We have,
I = \int_{\frac{\pi}{3}}^{\frac{\pi}{4}} (tanx+cotx)^2dx
I = \int_{\frac{\pi}{3}}^{\frac{\pi}{4}} (\frac{sinx}{cosx}+\frac{cosx}{sinx})^2dx
I = \int_{\frac{\pi}{3}}^{\frac{\pi}{4}} (\frac{sin^2x+cos^2x}{cosxsinx})^2dx
I = \int_{\frac{\pi}{3}}^{\frac{\pi}{4}} (\frac{1}{cosxsinx})^2dx
I = \int_{\frac{\pi}{3}}^{\frac{\pi}{4}}\frac{1}{cos^2xsin^2x}dx
I = \int_{\frac{\pi}{3}}^{\frac{\pi}{4}}\frac{4}{4cos^2xsin^2x}dx
I = \int_{\frac{\pi}{3}}^{\frac{\pi}{4}}\frac{4}{(sin2x)^2}dx
I = 4\int_{\frac{\pi}{3}}^{\frac{\pi}{4}}cosec^22xdx
I = 4\left[\frac{-cot2x}{2}\right]_{\frac{\pi}{3}}^{\frac{\pi}{4}}
I = 2\left[-cot2x\right]_{\frac{\pi}{3}}^{\frac{\pi}{4}}
I = 2[-cotπ/2 + cot2π/3]
I = 2[-1/√3 - 0]
I = -2/√3
Therefore, the value of \int_{\frac{\pi}{3}}^{\frac{\pi}{4}} (tanx+cotx)^2dx is -2/√3.
Question 22. \int_{0}^{\frac{\pi}{2}} cos^4xdx
Solution:
We have,
I = \int_{0}^{\frac{\pi}{2}} cos^4xdx
I = \int_{0}^{\frac{\pi}{2}} (cos^2x)^2dx
I = \int_{0}^{\frac{\pi}{2}} (\frac{1+cos2x}{2})^2dx
I = \frac{1}{4}\int_{0}^{\frac{\pi}{2}} (1+cos2x)^2dx
I = \frac{1}{4}\int_{0}^{\frac{\pi}{2}} (1+cos^22x+2cos2x)dx
I = \frac{1}{4}\int_{0}^{\frac{\pi}{2}} (1+\frac{1+cos4x}{2}+2cos2x)dx
I = \frac{1}{4}\left[x+\frac{x}{2}+\frac{sin4x}{8}+sin2x\right]^{\frac{\pi}{2}}_0
I = 1/4[π/2 + π/4 + 0 + 0 - 0 - 0 - 0 - 0]
I = 1/4[3π/4]
I = 3π/16
Therefore, the value of \int_{0}^{\frac{\pi}{2}} cos^4xdx is 3π/16.
Summary
Exercise 20.1 in RD Sharma's Class 12 textbook focuses on definite integrals. This section typically covers:
- The concept of definite integrals
- Properties of definite integrals
- Evaluation of definite integrals using fundamental theorems of calculus
- Integration techniques applied to definite integrals
Explore
Basic Arithmetic
Algebra
Geometry
Trigonometry & Vector Algebra
Calculus
Probability and Statistics
Practice