Evaluate the following definite integrals:
Question 1. \int_{2}^{4}\frac{x}{x^2+1}dx
Solution:
We have,
I = \int_{2}^{4}\frac{x}{x^2+1}dx
I = \frac{1}{2}\int_{2}^{4}\frac{2x}{x^2+1}dx
I = \left[\frac{1}{2}\log(1+x^2)\right]_{2}^{4}
I = \frac{1}{2}\log(1+4^2)-\frac{1}{2}\log(1+2^2)
I = \frac{1}{2}\log(1+16)-\frac{1}{2}\log(1+4)
I = \frac{1}{2}\log17-\frac{1}{2}\log5
I = \frac{1}{2}(\log17-log5)
I = \frac{1}{2}\log\frac{17}{5}
Therefore, the value of \int_{2}^{4}\frac{x}{x^2+1}dx is \frac{1}{2}\log\frac{17}{5}.
Question 2. \int_{1}^{2}\frac{1}{x(1+logx)^2}dx
Solution:
We have,
I = \int_{1}^{2}\frac{1}{x(1+logx)^2}dx
Let 1 + log x = t, so we have,
=> (1/x) dx = 2t dt
Now, the lower limit is, x = 1
=> t = 1 + log x
=> t = 1 + log 1
=> t = 1 + 0
=> t = 1
Also, the upper limit is, x = 2
=> t = 1 + log x
=> t = 1 + log 2
So, the equation becomes,
I = \int_{1}^{1+\log2}\frac{1}{t^2}dt
I = \left[\frac{-1}{t}\right]_1^{1+\log2}
I = \left[\frac{-1}{1+\log2}+1\right]
I = \frac{-1+1+\log2}{1+\log2}
I = \frac{\log2}{1+\log2}
I = \frac{\log2}{\log e+\log2}
I = \frac{\log2}{\log2e}
Therefore, the value of \int_{1}^{2}\frac{1}{x(1+logx)^2}dx is \frac{\log2}{\log2e}.
Question 3. \int_{1}^{2}\frac{3x}{9x^2-1}dx
Solution:
We have,
I = \int_{1}^{2}\frac{3x}{9x^2-1}dx
Let 9x2 – 1 = t, so we have,
=> 18x dx = dt
=> 3x dx = dt/6
Now, the lower limit is, x = 1
=> t = 9x2 – 1
=> t = 9 (1)2 – 1
=> t = 9 – 1
=> t = 8
Also, the upper limit is, x = 2
=> t = 9x2 – 1
=> t = 9 (2)2 – 1
=> t = 36 – 1
=> t = 35
So, the equation becomes,
I = \int_{8}^{35}\frac{1}{6t}dt
I = \left[\frac{1}{6}\log t\right]_{8}^{35}
I = \frac{1}{6}(\log 35-\log 8)
I = \frac{1}{6}\log \frac{35}{8}
Therefore, the value of \int_{1}^{2}\frac{3x}{9x^2-1}dx is \frac{1}{6}\log \frac{35}{8}.
Question 4. \int_{0}^{\frac{\pi}{2}}\frac{1}{5cosx+3sinx}dx
Solution:
We have,
I = \int_{0}^{\frac{\pi}{2}}\frac{1}{5cosx+3sinx}dx
On putting sin x = \frac{2tan\frac{x}{2}}{1+tan^2\frac{x}{2}} and cos x = \frac{1-tan^2\frac{x}{2}}{1+tan^2\frac{x}{2}}, we get
I = \int_{0}^{\frac{\pi}{2}}\frac{sec^2\frac{x}{2}}{5(1-tan^2\frac{x}{2})+6tan\frac{x}{2}}dx
I = \int_{0}^{\frac{\pi}{2}}\frac{sec^2\frac{x}{2}}{5-5tan^2\frac{x}{2}+6tan\frac{x}{2}}dx
Let tan x/2 = t. So, we have
=> \frac{1}{2}sec^2\frac{x}{2} = dt
Now, the lower limit is, x = 0
=> t = tan x/2
=> t = tan 0
=> t = 0
Also, the upper limit is, x = π/2
=> t = tan x/2
=> t = tan π/4
=> t = 1
So, the equation becomes,
I = \int_{0}^{1}\frac{2}{5-5t^2+6t}dt
I = \frac{2}{5}\int_{0}^{1}\frac{1}{1-t^2+\frac{6}{5}t}dt
I = \frac{2}{5}\int_{0}^{1}\frac{1}{\frac{34}{25}-(t-\frac{3}{5})^2}dt
I = \left[\frac{2}{5}.\frac{1}{2}\sqrt{\frac{25}{34}}\log\left(\frac{\sqrt{\frac{34}{25}}+t-\frac{3}{5}}{\sqrt{\frac{34}{25}}-t+\frac{3}{5}}\right)\right]^1_0
I = \left[\frac{2}{5}.\frac{1}{2}\frac{5}{\sqrt{34}}\log\left(\frac{\sqrt{\frac{34}{25}}+t-\frac{3}{5}}{\sqrt{\frac{34}{25}}-t+\frac{3}{5}}\right)\right]^1_0
I = \frac{1}{\sqrt{34}}\left[\log\left(\frac{\sqrt{34}+2}{\sqrt{34}-2}\right)-\log\left(\frac{\sqrt{34}-3}{\sqrt{34}+3}\right)\right]
I = \frac{1}{\sqrt{34}}\log\left(\frac{(\sqrt{34}+2)(\sqrt{34}+3)}{(\sqrt{34}-2)(\sqrt{34}-3)}\right)
I = \frac{1}{\sqrt{34}}\log\left(\frac{40+5\sqrt{34}}{40-5\sqrt{34}}\right)
I = \frac{1}{\sqrt{34}}\log\left(\frac{8+\sqrt{34}}{8-\sqrt{34}}\right)
Therefore, the value of \int_{0}^{\frac{\pi}{2}}\frac{1}{5cosx+3sinx}dx is \frac{1}{\sqrt{34}}\log\left(\frac{8+\sqrt{34}}{8-\sqrt{34}}\right).
Question 5. \int_{0}^{a}\frac{x}{\sqrt{a^2+x^2}}dx
Solution:
We have,
I = \int_{0}^{a}\frac{x}{\sqrt{a^2+x^2}}dx
Let a2 + x2 = t2. So, we have
=> 2x dx = 2t dt
=> x dx = t dt
Now, the lower limit is, x = 0
=> t2 = a2 + x2
=> t2 = a2 + 02
=> t2 = a2
=> t = a
Also, the upper limit is, x = a
=> t2 = a2 + x2
=> t2 = a2 + a2
=> t2 = 2a2
=> t = √2 a
So, the equation becomes,
I = \int_{a}^{\sqrt{2}a}\frac{t}{t}dt
I = \int_{a}^{\sqrt{2}a}dt
I = \left[t\right]_{a}^{\sqrt{2}a}
I = √2a – a
I = a (√2 – 1)
Therefore, the value of \int_{0}^{a}\frac{x}{\sqrt{a^2+x^2}}dx is a (√2 – 1).
Question 6. \int_{0}^{1}\frac{e^x}{1+e^{2x}}dx
Solution:
We have,
I = \int_{0}^{1}\frac{e^x}{1+e^{2x}}dx
Let ex = t. So, we have
=> ex dx = dt
Now, the lower limit is, x = 0
=> t = ex
=> t = e0
=> t = 1
Also, the upper limit is, x = a
=> t = ex
=> t = e1
=> t = e
So, the equation becomes,
I = \int_{1}^{e}\frac{1}{1+t^2}dt
I = \left[tan^{-1}t\right]_{1}^{e}
I = tan^{-1}e-tan^{-1}1
I = tan^{-1}e-\frac{\pi}{4}
Therefore, the value of \int_{0}^{1}\frac{e^x}{1+e^{2x}}dx is tan^{-1}e-\frac{\pi}{4}.
Question 7. \int_{0}^{1}xe^{x^2}dx
Solution:
We have,
I = \int_{0}^{1}xe^{x^2}dx
Let x2 = t. So, we have
=> 2x dx = dt
Now, the lower limit is, x = 0
=> t = x2
=> t = 02
=> t = 0
Also, the upper limit is, x = 1
=> t = x2
=> t = 12
=> t = 1
So, the equation becomes,
I = \int_{0}^{1}\frac{e^t}{2}dt
I = \frac{1}{2}\int_{0}^{1}e^tdt
I = \frac{1}{2}\left[e^t\right]_{0}^{1}
I = \frac{1}{2}\left[e^1-e^0\right]
I = \frac{1}{2}(e-1)
Therefore, the value of \int_{0}^{1}xe^{x^2}dx is \frac{1}{2}(e-1).
Question 8. \int_{1}^{3}\frac{cos(logx)}{x}dx
Solution:
We have,
I = \int_{1}^{3}\frac{cos(logx)}{x}dx
Let log x = t. So, we have
=> (1/x) dx = dt
Now, the lower limit is, x = 1
=> t = log x
=> t = log 1
=> t = 0
Also, the upper limit is, x = 3
=> t = log x
=> t = log 3
So, the equation becomes,
I = \int_{0}^{\log3}costdt
I = \left[sint\right]_{0}^{\log3}
I = sin (log 3) – sin 0
I = sin (log 3) – 0
I = sin (log 3)
Therefore, the value of \int_{1}^{3}\frac{cos(logx)}{x}dx is sin (log 3).
Question 9. \int_{0}^{1}\frac{2x}{1+x^4}dx
Solution:
We have,
I = \int_{0}^{1}\frac{2x}{1+x^4}dx
Let x2 = t. So, we have
=> 2x dx = dt
Now, the lower limit is, x = 0
=> t = x2
=> t = 02
=> t = 0
Also, the upper limit is, x = 1
=> t = x2
=> t = 12
=> t = 1
So, the equation becomes,
I = \int_{0}^{1}\frac{1}{1+t^2}dt
I = \left[tan^{-1}t\right]_{0}^{1}
I = tan^{-1}1-tan^{-1}0
I = \frac{\pi}{4}-0
I = \frac{\pi}{4}
Therefore, the value of \int_{0}^{1}\frac{2x}{1+x^4}dx is \frac{\pi}{4}.
Question 10. \int_{0}^{a}\sqrt{a^2-x^2}dx
Solution:
We have,
I = \int_{0}^{a}\sqrt{a^2-x^2}dx
Let x = a sin t. So, we have
=> dx = a cos t dt
Now, the lower limit is, x = 0
=> a sin t = x
=> a sin t = 0
=> sin t = 0
=> t = 0
Also, the upper limit is, x = a
=> a sin t = a
=> a sin t = a
=> sin t = 1
=> t = π/2
So, the equation becomes,
I = \int_{0}^{\frac{\pi}{2}}\sqrt{a^2-a^2sin^2t}(acost)dt
I = \int_{0}^{\frac{\pi}{2}}\sqrt{a^2(1-sin^2t)}(acost)dt
I = \int_{0}^{\frac{\pi}{2}}\sqrt{a^2cos^2t}(acost)dt
I = \int_{0}^{\frac{\pi}{2}}(acost)(acost)dt
I = \int_{0}^{\frac{\pi}{2}}a^2cos^2tdt
I = a^2\int_{0}^{\frac{\pi}{2}}cos^2tdt
I = \frac{a^2}{2}\int_{0}^{\frac{\pi}{2}}(1+cos2t)dt
I = \frac{a^2}{2}\left[t+\frac{sin2t}{2}\right]_{0}^{\frac{\pi}{2}}
I = \frac{a^2}{2}\left[\frac{\pi}{2}+0-0-0\right]
I = \frac{a^2}{2}\left[\frac{\pi}{2}\right]
I = \frac{\pi a^2}{4}
Therefore, the value of \int_{0}^{a}\sqrt{a^2-x^2}dx is \frac{\pi a^2}{4}.
Question 11. \int_{0}^{\frac{\pi}{2}}\sqrt{sinØ}cos^5ØdØ
Solution:
We have,
I = \int_{0}^{\frac{\pi}{2}}\sqrt{sinØ}cos^5ØdØ
I = \int_{0}^{\frac{\pi}{2}}\sqrt{sinØ}cos^4ØcosØdØ
Let sin Ø = t. So, we have
=> cos Ø dØ = dt
Now, the lower limit is, Ø = 0
=> t = sin Ø
=> t = sin 0
=> t = 0
Also, the upper limit is, Ø = π/2
=> t = sin Ø
=> t = sin π/2
=> t = 1
So, the equation becomes,
I = \int_{0}^{1}\sqrt{t}(1-t^2)^2dt
I = \int_{0}^{1}\sqrt{t}(1+t^4-2t^2)dt
I = \int_{0}^{1}(t^\frac{1}{2}+t^\frac{9}{2}-2t^\frac{5}{2})dt
I = \left[\frac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}+\frac{t^{\frac{9}{2}+1}}{\frac{9}{2}+1}-\frac{2t^{\frac{5}{2}+1}}{\frac{5}{2}+1}\right]_{0}^{1}
I = \left[\frac{t^{\frac{3}{2}}}{\frac{3}{2}}+\frac{t^{\frac{11}{2}}}{\frac{11}{2}}-\frac{2t^{\frac{7}{2}}}{\frac{7}{2}}\right]_{0}^{1}
I = \left[\frac{2t^{\frac{3}{2}}}{3}+\frac{2t^{\frac{11}{2}}}{11}-\frac{4t^{\frac{7}{2}}}{7}\right]_{0}^{1}
I = \frac{2}{3}+\frac{2}{11}-\frac{4}{7}
I = \frac{154+42-132}{231}
I = \frac{64}{231}
Therefore, the value of \int_{0}^{\frac{\pi}{2}}\sqrt{sinØ}cos^5ØdØ is \frac{64}{231}.
Question 12. \int_{0}^{\frac{\pi}{2}}\frac{cosx}{1+sinx}dx
Solution:
We have,
I = \int_{0}^{\frac{\pi}{2}}\frac{cosx}{1+sin^2x}dx
Let sin x = t. So, we have
=> cos x dx = dt
Now, the lower limit is, x = 0
=> t = sin x
=> t = sin 0
=> t = 0
Also, the upper limit is, x = π/2
=> t = sin x
=> t = sin π/2
=> t = 1
So, the equation becomes,
I = \int_{0}^{1}\frac{1}{1+t^2}dt
I = \left[tan^{-1}t\right]_{0}^{1}
I = tan^{-1}1-tan^{-1}0
I = \frac{\pi}{4}-0
I = \frac{\pi}{4}
Therefore, the value of \int_{0}^{\frac{\pi}{2}}\frac{cosx}{1+sin^2x}dx is \frac{\pi}{4}.
Question 13. \int_{0}^{\frac{\pi}{2}}\frac{sin\theta}{\sqrt{1+cos\theta}}d\theta
Solution:
We have,
I = \int_{0}^{\frac{\pi}{2}}\frac{sin\theta}{\sqrt{1+cos\theta}}d\theta
Let 1 + cos θ = t2. So, we have
=> – sin θ dθ = 2t dt
=> sin θ dθ = –2t dt
Now, the lower limit is, θ = 0
=> t2 = 1 + cos θ
=> t2 = 1 + cos 0
=> t2 = 1 + 1
=> t2 = 2
=> t = √2
Also, the upper limit is, θ = π/2
=> t2 = 1 + cos θ
=> t2 = 1 + cos π/2
=> t2 = 1 + 0
=> t2 = 1
=> t = 1
So, the equation becomes,
I = \int_{\sqrt{2}}^{1}\frac{-2t}{t}dt
I = \int_{\sqrt{2}}^{1}-2dt
I = -2\left[t\right]_{\sqrt{2}}^{1}
I = -2\left[1-\sqrt{2}\right]
I = 2\left[\sqrt{2}-1\right]
Therefore, the value of \int_{0}^{\frac{\pi}{2}}\frac{sin\theta}{\sqrt{1+cos\theta}}d\theta is 2\left[\sqrt{2}-1\right].
Question 14. \int_{0}^{\frac{\pi}{3}}\frac{cosx}{3+4sinx}dx
Solution:
We have,
I = \int_{0}^{\frac{\pi}{3}}\frac{cosx}{3+4sinx}dx
Let 3 + 4 sin x = t. So, we have
=> 0 + 4 cos x dx = dt
=> 4 cos x dx = dt
=> cos x dx = dt/4
Now, the lower limit is, x = 0
=> t = 3 + 4 sin x
=> t = 3 + 4 sin 0
=> t = 3 + 0
=> t = 3
Also, the upper limit is, x = π/3
=> t = 3 + 4 sin x
=> t = 3 + 4 sin π/3
=> t = 3 + 4 (√3/2)
=> t = 3 + 2√3
So, the equation becomes,
I = \int_{3}^{3+2\sqrt{3}}\frac{1}{4t}dt
I = \frac{1}{4}\left[\log t\right]_{3}^{3+2\sqrt{3}}
I = \frac{1}{4}\left[\log (3+2\sqrt{3})-\log 3)\right]
I = \frac{1}{4}\log\frac{3+2\sqrt{3}}{3}
Therefore, the value of \int_{0}^{\frac{\pi}{3}}\frac{cosx}{3+4sinx}dx is \frac{1}{4}\log\frac{3+2\sqrt{3}}{3}.
Question 15. \int_{0}^{1}\frac{\sqrt{tan^{-1}x}}{1+x^2}dx
Solution:
We have,
I = \int_{0}^{1}\frac{\sqrt{tan^{-1}x}}{1+x^2}dx
Let tan–1 x = t. So, we have
=> (1/1+x2) dx = dt
Now, the lower limit is, x = 0
=> t = tan–1 x
=> t = tan–1 0
=> t = 0
Also, the upper limit is, x = 1
=> t = tan–1 t
=> t = tan–1 1
=> t = π/4
So, the equation becomes,
I = \int_{0}^{\frac{\pi}{4}}t^{\frac{1}{2}}dt
I = \left[\frac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}\right]_{0}^{\frac{\pi}{4}}
I = \left[\frac{t^{\frac{3}{2}}}{\frac{3}{2}}\right]_{0}^{\frac{\pi}{4}}
I = \frac{2}{3}\left[t^{\frac{3}{2}}\right]_{0}^{\frac{\pi}{4}}
I = \frac{2}{3}\left[(\frac{\pi}{4})^{\frac{3}{2}}-0\right]
I = \frac{2}{3}(\frac{\pi}{4})^{\frac{3}{2}}
I = \frac{2}{24}\pi^{\frac{3}{2}}
I = \frac{1}{12}\pi^{\frac{3}{2}}
Therefore, the value of \int_{0}^{1}\frac{\sqrt{tan^{-1}x}}{1+x^2}dx is \frac{1}{12}\pi^{\frac{3}{2}}.
Question 16. \int_{0}^{2}x\sqrt{x+2}dx
Solution:
We have,
I = \int_{0}^{2}x\sqrt{x+2}dx
Let x + 2 = t2. So, we have
=> dx = 2t dt
Now, the lower limit is, x = 0
=> t2 = x + 2
=> t2 = 0 + 2
=> t2 = 2
=> t = √2
Also, the upper limit is, x = 2
=> t2 = x + 2
=> t2 = 2 + 2
=> t2 = 4
=> t = 2
So, the equation becomes,
I = \int_{\sqrt{2}}^{2}(t^2-2)\sqrt{t^2}2tdt
I = 2\int_{\sqrt{2}}^{2}(t^2-2)t^2dt
I = 2\int_{\sqrt{2}}^{2}(t^4-2t^2)dt
I = 2\left[\frac{t^5}{5}-\frac{2t^3}{3}\right]_{\sqrt{2}}^{2}
I = 2\left[\frac{32}{5}-\frac{16}{3}-\frac{4\sqrt{2}}{5}+\frac{4\sqrt{2}}{3}\right]
I = 2\left[\frac{16+8\sqrt{2}}{15}\right]
I = 2\left[\frac{8\sqrt{2}(1+\sqrt{2})}{15}\right]
I = \frac{16\sqrt{2}(1+\sqrt{2})}{15}
Therefore, the value of \int_{0}^{2}x\sqrt{x+2}dx is \frac{16\sqrt{2}(1+\sqrt{2})}{15}.
Question 17. \int_{0}^{1}tan^{-1}\frac{2x}{1-x^2}dx
Solution:
We have,
I = \int_{0}^{1}tan^{-1}\frac{2x}{1-x^2}dx
Let x = tan t. So, we have
=> dx = sec2 t dt
Now, the lower limit is, x = 0
=> tan t = x
=> tan x = 0
=> x = 0
Also, the upper limit is, x = 1
=> tan t = x
=> tan x = 1
=> x = π/4
So, the equation becomes,
I = \int_{0}^{\frac{\pi}{4}}tan^{-1}(\frac{2tant}{1-tan^2t})sec^2tdt
I = \int_{0}^{\frac{\pi}{4}}tan^{-1}(tan2t)sec^2tdt
I = \int_{0}^{\frac{\pi}{4}}2tsec^2tdt
I = 2\int_{0}^{\frac{\pi}{4}}tsec^2tdt
On applying integration by parts method, we get
I = 2\left[t\int_0^\frac{\pi}{4}sec^2tdt-\int_0^\frac{\pi}{4}tantdt\right]
I = 2\left[ttant-log(cost)\right]^{\frac{\pi}{4}}_0
I = 2\left[\frac{\pi}{4}+log\frac{1}{\sqrt{2}}-0-0\right]
I = 2\left[\frac{\pi}{4}+\frac{1}{2}log2\right]
I = \frac{\pi}{2}+log2
Therefore, the value of \int_{0}^{1}tan^{-1}\frac{2x}{1-x^2}dx is \frac{\pi}{2}+log 2.
Question 18. \int_{0}^{\frac{\pi}{2}}\frac{sinxcosx}{1+sin^4x}dx
Solution:
We have,
I = \int_{0}^{\frac{\pi}{2}}\frac{sinxcosx}{1+sin^4x}dx
Let sin2 x = t. So, we have
=> 2 sin x cos x = dt
=> sin x cos x = dt/2
Now, the lower limit is, x = 0
=> t = sin2 x
=> t = sin2 0
=> t = 0
Also, the upper limit is, x = π/2
=> t = sin2 x
=> t = sin2 π/2
=> t = 1
So, the equation becomes,
I = \int_{0}^{1}\frac{1}{2(1+t^2)}dt
I = \frac{1}{2}\int_{0}^{1}\frac{1}{1+t^2}dt
I = \frac{1}{2}\left[tan^{-1}t\right]^1_0
I = \frac{1}{2}\left[tan^{-1}1-tan^{-1}0\right]
I = \frac{1}{2}\left[\frac{\pi}{4}-0\right]
I = \frac{1}{2}(\frac{\pi}{4})
I = \frac{\pi}{8}
Therefore, the value of \int_{0}^{\frac{\pi}{2}}\frac{sinxcosx}{1+sin^4x}dx is \frac{\pi}{8}.
Question 19. \int_{0}^{\frac{\pi}{2}}\frac{1}{acosx+bsinx}dx
Solution:
We have,
I = \int_{0}^{\frac{\pi}{2}}\frac{1}{acosx+bsinx}dx
On putting cos x = \frac{1-tan^2\frac{x}{2}}{1+tan^2\frac{x}{2}}=\frac{1-tan^2\frac{x}{2}}{sec^2\frac{x}{2}} and sin x = \frac{2tan\frac{x}{2}}{1+tan^2\frac{x}{2}}=\frac{2tan\frac{x}{2}}{sec^2\frac{x}{2}} , we get,
I = \int_{0}^{\frac{\pi}{2}}\frac{sec^2\frac{x}{2}}{a(1-tan^2\frac{x}{2})+2btan\frac{x}{2}}dx
Let tan x/2 = t. So, we have
=> 1/2 sec2 x/2 dx = dt
=> sec2 x/2 dx = 2 dt
Now, the lower limit is, x = 0
=> t = tan x/2
=> t = tan 0/2
=> t = tan 0
=> t = 0
Also, the upper limit is, x = π/2
=> t = tan x/2
=> t = tan π/4
=> t = 1
So, the equation becomes,
I = 2\int_{0}^{1}\frac{1}{a(1-t^2)+2bt}dt
I = 2\int_{0}^{1}\frac{1}{a-at^2+2bt}dt
I = 2\int_{0}^{1}\frac{1}{-a(t^2-\frac{2b}{a}t-1)}dt
I = \frac{2}{a}\int_{0}^{1}\frac{1}{-\left[(t-\frac{b}{a})^2-1-\frac{b^2}{a^2}\right]}dt
I = \frac{2}{a}\int_{0}^{1}\frac{1}{(\frac{b^2}{a^2}+1)-(t-\frac{b}{a})^2}dt
I = \left[\frac{2}{a}\left(\frac{1}{2\sqrt{\frac{b^2+a^2}{a^2}}}\right)\log\left(\frac{\sqrt{\frac{b^2+a^2}{a^2}}+(t-\frac{b}{a})}{\sqrt{\frac{b^2+a^2}{a^2}}-(t-\frac{b}{a})}\right)\right]_{0}^{1}
I = \frac{1}{\sqrt{b^2+a^2}}\log\left(\frac{a+b+\sqrt{a^2+b^2}}{a+b-\sqrt{a^2+b^2}}\right)
Therefore, the value of \int_{0}^{\frac{\pi}{2}}\frac{1}{acosx+bsinx}dx is \frac{1}{\sqrt{b^2+a^2}}\log\left(\frac{a+b+\sqrt{a^2+b^2}}{a+b-\sqrt{a^2+b^2}}\right).
Question 20. \int_{0}^{\frac{\pi}{2}}\frac{1}{5+4sinx}dx
Solution:
We have,
I = \int_{0}^{\frac{\pi}{2}}\frac{1}{5+4sinx}dx
On putting sin x = \frac{2tan\frac{x}{2}}{1+tan^2\frac{x}{2}}, we get
I = \int_{0}^{\frac{\pi}{2}}\frac{1}{5+4\left(\frac{2tan\frac{x}{2}}{1+tan^2\frac{x}{2}}\right)}dx
I = \int_{0}^{\frac{\pi}{2}}\frac{1}{5+\left(\frac{8tan\frac{x}{2}}{1+tan^2\frac{x}{2}}\right)}dx
I = \int_{0}^{\frac{\pi}{2}}\frac{1}{\frac{5(1+tan^2\frac{x}{2})+8tan\frac{x}{2}}{1+tan^2\frac{x}{2}}}dx
I = \int_{0}^{\frac{\pi}{2}}\frac{1}{\frac{5+5tan^2\frac{x}{2}+8tan\frac{x}{2}}{1+tan^2\frac{x}{2}}}dx
I = \int_{0}^{\frac{\pi}{2}}\frac{1}{\frac{5+5tan^2\frac{x}{2}+8tan\frac{x}{2}}{sec^2\frac{x}{2}}}dx
I = \int_{0}^{\frac{\pi}{2}}\frac{sec^2\frac{x}{2}}{5+5tan^2\frac{x}{2}+8tan\frac{x}{2}}dx
Let tan x/2 = t. So, we have
=> 1/2 sec2 x/2 dx = dt
=> sec2 x/2 dx = 2 dt
Now, the lower limit is, x = 0
=> t = tan x/2
=> t = tan 0/2
=> t = tan 0
=> t = 0
Also, the upper limit is, x = π/2
=> t = tan x/2
=> t = tan π/4
=> t = 1
So, the equation becomes,
I = \int_{0}^{1}\frac{1}{5+5t^2+8t}dt
I = \frac{2}{5}\int_{0}^{1}\frac{1}{1+t^2+\frac{8}{5}t}dt
I = \frac{2}{5}\int_{0}^{1}\frac{1}{1-\frac{16}{25}+\frac{16}{25}+t^2+\frac{8}{5}t}dt
I = \frac{2}{5}\int_{0}^{1}\frac{1}{\frac{9}{25}+\frac{16}{25}+t^2+\frac{8}{5}t}dt
I = \frac{2}{5}\int_{0}^{1}\frac{1}{(\frac{3}{5})^2+(t+\frac{4}{5})^2}dt
I = \frac{2}{5}\left[\frac{5}{3}tan^{-1}\frac{5}{3}(t+\frac{4}{5})\right]_{0}^{1}
I = \frac{2}{3}\left[tan^{-1}(\frac{5t}{3}+\frac{4}{3})\right]_{0}^{1}
I = \frac{2}{3}\left[tan^{-1}(\frac{5}{3}+\frac{4}{3})-tan^{-1}(0+\frac{4}{3})\right]
I = \frac{2}{3}\left[tan^{-1}(\frac{9}{3})-tan^{-1}(\frac{4}{3})\right]
I = \frac{2}{3}\left[tan^{-1}(3)-tan^{-1}(\frac{4}{3})\right]
I = \frac{2}{3}\left[tan^{-1}(\frac{3-\frac{4}{3}}{1+3(\frac{4}{3})})\right]
I = \frac{2}{3}\left[tan^{-1}(\frac{\frac{5}{3}}{1+4})\right]
I = \frac{2}{3}tan^{-1}(\frac{\frac{5}{3}}{5})
I = \frac{2}{3}tan^{-1}(\frac{1}{3})
Therefore, the value of \int_{0}^{\frac{\pi}{2}}\frac{1}{5+4sinx}dx is \frac{2}{3}tan^{-1}(\frac{1}{3}).
Summary
This exercise typically covers:
- Basic evaluation of definite integrals
- Application of fundamental theorem of calculus
- Integrals involving algebraic and trigonometric functions
- Use of substitution method in definite integrals
- Properties of definite integrals
Explore
Basic Arithmetic
Algebra
Geometry
Trigonometry & Vector Algebra
Calculus
Probability and Statistics
Practice