Solve the following differential equations:
Question 1. (x - 1)(dy/dx) = 2xy
Solution:
We have,
(x - 1)(dy/dx) = 2xy
dy/y = [2x/(x - 1)]dx
On integrating both sides,
∫(dy/y) = ∫[2x + (x - 1)]dx
log(y) = ∫[2 + 2/(x - 1)]dx
log(y) = 2x + 2log(x - 1) + c (Where 'c' is integration constant)
Question 2. (x2 + 1)dy = xydx
Solution:
We have,
(x2 + 1)dy = xydx
(dy/y) = [x/(x2 + 1)]dx
On integrating both sides
∫(dy/y) = ∫[x/(x2 + 1)]dx
log(y) = (1/2)∫[2x/(x2 + 1)]dx
log(y) = (1/2)log(x2 + 1) + c (Where 'c' is integration constant)
Question 3. (dy/dx) = (ex + 1)y
Solution:
We have,
(dy/dx) = (ex + 1)y
(dy/y) = (ex + 1)dx
On integrating both sides
∫(dy/y) = ∫(ex + 1)dx
log(y) = (ex + x) + c (Where 'c' is integration constant)
Question 4. (x - 1)(dy/dx) = 2x3y
Solution:
We have,
(x - 1)(dy/dx) = 2x3y
(dy/y) = [2x3/(x - 1)]dx
On integrating both sides
∫(dy/y) = ∫[2x3/(x - 1)]dx
∫(dy/y) = 2∫[x2 + x + 1 + 1/(x - 1)]dx
log(y) = (2/3)(x3) + x2 + 2x + 2log(x - 1) + c (Where 'c' is integration constant)
Question 5. xy(y + 1)dy = (x2 + 1)dx
Solution:
We have,
xy(y + 1)dy = (x2 + 1)dx
y(y + 1)dy = [(x2 + 1)/x]dx
(y2 + y)dy = xdx + (dx/x)
On integrating both sides,
∫(y2 + y)dy = ∫xdx + (dx/x)
(y3/3) + (y2/2) = (x2/2) + log(x) + c (Where 'c' is integration constant)
Question 6. 5(dy/dx) = exy4
Solution:
We have,
5(dy/dx) = exy4
5(dy/y4) = ex
On integrating both sides,
5∫(dy/y4) = ∫ex
-(5/3)(1/y3) = ex + c (Where 'c' is integration constant)
Question 7. xcosydy = (xexlogx + ex)dx
Solution:
We have,
xcosydy = (xexlogx + ex)dx
cosydy = ex(logx + 1/x)dx
On integrating both sides,
∫cosydy = ∫ex(logx + 1/x)dx
Since, ∫[f(x) + f'(x)]exdx] = exf(x)
siny = exlogx + c (Where 'c' is integration constant)
Question 8. (dy/dx) = ex+y + x2ey
Solution:
We have,
(dy/dx) = ex+y + x2ey
(dy/dx) = exey + x2ey
dy = ey(ex + x2)dx
e-ydy = (ex + x2)dx
On integrating both sides,
∫e-ydy = ∫(ex + x2)dx
-e-y = ex + (x3/3) + c (Where 'c' is integration constant)
Question 9. x(dy/dx) + y = y2
Solution:
We have,
x(dy/dx) + y = y2
x(dy/dx) = y2 - y
[1/(y2 - y)]dy = dx/x
On integrating both sides,
∫[1/(y2 - y)]dy = ∫dx/x
∫[1/(y - 1) - 1/y]dy = ∫(dx/x)
log(y-1) - log(y) = logx + logc
log[(y - 1)/y] = log[xc]
(y - 1)/y = xc
(y-1) = yxc (Where 'c' is integration constant)
Question 10. (ey + 1)cosxdx + eysinxdy = 0
Solution:
We have,
(ey + 1)cosxdx + eysinxdy = 0
(cosx/sinx)dx = -[ey/(ey + 1)]dy
On integrating both sides,
∫(cosx/sinx)dx = -∫[ey/(ey + 1)]dy
log(sinx) = -log(ey + 1) + log(c)
log(sinx) + log(ey + 1) = log(c)
log[sinx(ey + 1)] = log(c)
sinx(ey + 1) = c (Where 'c' is integration constant)
Question 11. xcos2ydx = ycos2xdy
Solution:
We have,
xcos2ydx = ycos2xdy
(x/cos2x)dx = (y/cos2y)dy
xsec2xdx = ysec2ydy
On integrating both sides,
∫xsec2xdx = ∫ysec2ydy
x∫sec^2x - ∫[\frac{d(x)}{dx(x)}∫sec^2xdx]dx = y∫sec^2x-∫[\frac{d(y)}{dy}(y)∫sec^2y]dy
xtanx - ∫tanxdx = ytany - ∫tanydy
xtanx - log(secx) = ytany - log(secy) + c (Where 'c' is integration constant)
Question 12. xydy = (y - 1)(x + 1)dx
Solution:
We have,
xydy = (y - 1)(x + 1)dx
[y/(y - 1)]dy = [(x + 1)/x]dx
On integrating both sides,
∫[y/(y - 1)]dy = ∫[(x + 1)/x]dx
∫[1 + 1/(y - 1)]dy = ∫[(x + 1)/x]dx
y + log(y - 1) = x + log(x) + c
y - x = log(x) - log(y - 1) + c (Where 'c' is integration constant)
Question 13. x(dy/dx) + coty = 0
Solution:
We have,
x(dy/dx) + coty = 0
x(dy/dx) = -coty
dy/coty = -(dx/x)
tanydy = -(dx/x)
On integrating both sides,
∫tanydy = -∫(dx/x)
log(secy) = -log(x) + log(c)
log(secy) + log(x) = log(c)
log(xsecy) = log(c)
x/cosy = c
x = c * cosy (Where 'c' is integration constant)
Question 14. (dy/dx) = (xexlogx + ex)/(xcosy)
Solution:
We have,
(dy/dx) = (xexlogx + ex)/(xcosy)
xcosydy = (xexlogx + ex)dx
cosydy = ex(logx + 1/x)dx
On integrating both sides,
∫cosydy = ∫ex(logx + 1/x)dx
Since, ∫[f(x) + f'(x)]exdx] = exf(x)
siny = exlogx + c (Where 'c' is integration constant)
Question 15. (dy/dx) = ex+y + x3ey
Solution:
We have,
(dy/dx) = ex+y + x3ey
(dy/dx) = exey + x3ey
dy = ey(ex + x3)dx
e-ydy = (ex + x3)dx
On integrating both sides,
∫e-ydy = ∫(ex + x3)dx
-e-y = ex + (x4/4) + c
e-y + ex + (x4/4) = c (Where 'c' is integration constant)
Question 16. y√(1 + x2) + x√(1 + y2)(dy/dx) = 0
Solution:
We have,
y√(1 + x2) + √(1 + y2)(dy/dx) = 0
y√(1 + x2)dx = -x√(1 + y2)dy
\frac{\sqrt{1+y^2}}{y}dy=-\frac{\sqrt{1+x^2}}{x}dx
\frac{y\sqrt{1+y^2}}{y^2}dy=-\frac{x\sqrt{1+x^2}}{x^2}dx
On integrating both sides,
∫\frac{y\sqrt{1+y^2}}{y^2}dy=-∫\frac{x\sqrt{1+x^2}}{x^2}dx
Let, 1 + y2 = z2
On differentiating both sides
2ydy = 2zdz
ydy = zdz
= ∫\frac{y\sqrt{1+y^2}}{y^2}dy
= ∫\frac{zdz*z}{z^2-1}
= ∫[z2/(z2 - 1)]dz
= ∫[1 + 1/(z2 - 1)]dz
= z + (1/2)log[(z - 1)/(z + 1)]
On putting the value of z in above equation
= \sqrt{1+y^2}+\frac{1}{2}log[\frac{\sqrt{1+y^2}-1}{\sqrt{1+y^2}+1}]
Similarly,
∫\frac{x\sqrt{1+x^2}}{x^2}dx = \sqrt{1+x^2}+\frac{1}{2}log[\frac{\sqrt{1+x^2}-1}{\sqrt{1+x^2}+1}]
\sqrt{1+y^2}+\frac{1}{2}log[\frac{\sqrt{1+y^2}-1}{\sqrt{1+y^2}+1}]=-\sqrt{1+x^2}-\frac{1}{2}log[\frac{\sqrt{1+x^2}-1}{\sqrt{1+x^2}+1}]+c
\sqrt{1+y^2}+\sqrt{1+x^2}+\frac{1}{2}log[\frac{\sqrt{1+y^2}-1}{\sqrt{1+y^2}+1}]+\frac{1}{2}log[\frac{\sqrt{1+x^2}-1}{\sqrt{1+x^2}+1}]=c (Where 'c' is integration constant)
Question 17. √(1 + x2)(dy) + √(1 + y2)dx = 0
Solution:
We have,
√(1 + x2)(dy) + √(1 + y2)dx = 0
\frac{dy}{\sqrt{(1+y^2)}}=\frac{-dx}{\sqrt{(1+x^2)}}
On integrating both sides,
log[y + √(1 + y2)] = -log[x + √(1 + x2)] + logc
log[y + √(1 + y2)] + log[x + √(1 + x2)] = logc
log([y + √(1 + y2)][x + √(1 + x2)]) = logc
[y + √(1 + y2)][x + √(1 + x2)] = c (Where 'c' is integration constant)
Question 18. \sqrt{(1 + x^2 + y^2 + x^2y^2)} + xy(\frac{dy}{dx}) = 0
Solution:
We have,
\sqrt{(1 + x^2 + y^2 + x^2y^2)} + xy(\frac{dy}{dx}) = 0
\sqrt{[(1 + x^2) + y^2(1+x^2)]}+xy(\frac{dy}{dx})=0
\sqrt{[(1+x^2)(1+y^2)]}+xy(\frac{dy}{dx})=0
\frac{y}{\sqrt{1+y^2}}dy=-\frac{\sqrt{1+x^2}}{x}dx
\frac{y}{\sqrt{1+y^2}}dy=-\frac{x\sqrt{1+x^2}}{x^2}dx
On integrating both sides,
∫\frac{y}{\sqrt{1+y^2}}dy=-∫\frac{x\sqrt{1+x^2}}{x^2}dx
Let, 1 + x2 = z2
On differentiating both sides
2xdx = 2zdz
xdx = zdz
= -∫\frac{x\sqrt{1+x^2}}{x^2}dy
= -∫\frac{zdz*z}{z^2-1}
= -∫[z2/(z2 - 1)]dz
= -∫[1 + 1/(z2 - 1)]dz
= -z - (1/2)log[(z - 1)/(z + 1)]
On putting the value of z in above equation
=-\sqrt{1+x^2}-\frac{1}{2}log[\frac{\sqrt{1+x^2}-1}{\sqrt{1+x^2}+1}]
Let, 1 + y2 = v2
On differentiating both sides
2ydy = 2vdv
ydy = vdv
= ∫(vdv/v)
= v
On putting the value of v in above equation
= √(1 + y2)
= \sqrt{1+y^2}=-\sqrt{1+x^2}-\frac{1}{2}log[\frac{\sqrt{1+x^2}-1}{\sqrt{1+x^2}+1}]+c
= \sqrt{1+y^2}+\sqrt{1+x^2}+\frac{1}{2}log[\frac{\sqrt{1+x^2}-1}{\sqrt{1+x^2}+1}]=c (Where 'c' is integration constant)
Question 19. (\frac{dy}{dx}) = \frac{e^x(sin^2x + sin2x)}{y(2logy+1)}
Solution:
We have,
(\frac{dy}{dx}) = \frac{e^x(sin^2x + sin2x)}{y(2logy+1)}
y(2logy + 1)dy = ex(sin2x + sin2x)dx
On integrating both sides,
∫y(2logy + 1)dy = ∫ex(sin2x + sin2x)dx
2logy*∫ydy-∫[2\frac{d}{dx}(logy)∫ydy]dy+\frac{y^2}{2}=e^xsin^2x+c
Since, ∫ex(sin2x + sin2x)dx = exsin2x
Using property ∫[f(x) + f'(x)]ex = exf(x)
y2log(y) - ∫ydy + y2/2 = exsin2x + c
y2log(y) - y2/2 + y2/2 = exsin2x + c
y2log(y) = exsin2x + c (Where 'c' is integration constant)
Question 20. (dy/dx) = x(2logx + 1)/(siny + ycosy)
Solution:
We have,
(dy/dx) = x(2logx + 1)/(siny + ycosy)
(siny + ycosy)dy = x(2logx + 1)dx
On integrating both sides,
∫(siny + ycosy)dy = ∫x(2logx + 1)dx
∫sinydy + y∫cosydy - ∫{(dy/dy)∫cosydy}dy = 2logx∫xdx - 2∫{\frac{d(logx)}{dx}∫xdx} + ∫xdx
-cosy + ysiny - ∫sinydy = x2logx - ∫xdx + (x2/2) + c
-cosy + ysiny + cosy = x2logx - (x2/2) + (x2/2) + c
ysiny = x2logx + c (Where 'c' is integration constant)
Summary
Exercise 22.7, Set 1 focuses on solving homogeneous differential equations of the first order. These equations are characterized by the right-hand side being expressible as a function of y/x. The problems range from simple rational expressions to more complex forms involving quadratic terms. Students are asked to find both general and particular solutions. The primary method used to solve these equations involves the substitution y = vx, where v is a new function of x, which transforms the homogeneous equation into a separable one. This exercise helps students recognize homogeneous forms, apply the appropriate substitution, and solve the resulting separable equations.
Explore
Basic Arithmetic
Algebra
Geometry
Trigonometry & Vector Algebra
Calculus
Probability and Statistics
Practice