Question 27. (x2 - 2xy)dy + (x2 - 3xy + 2y2)dx = 0
Solution:
We have,
(x2 - 2xy)dy + (x2 - 3xy + 2y2)dx = 0
(dy/dx) = (x2 - 3xy + 2y2)/(2xy - y2)
It is a homogeneous equation,
So, put y = vx (i)
On differentiating both sides w.r.t x,
dy/dx = v + x(dv/dx)
So,
v + x(dv/dx) = (x2 - 3xvx + 2v2x2)/(2xvx - x2)
v + x(dv/dx) = (1 - 3v + 2v2)/(2v - 1)
x(dv/dx) = [(1 - 3v + 2v2)/(2v - 1)] - v
x(dv/dx) = (1 - 3v + 2v2 - 2v2 + v)/(2v - 1)
x(dv/dx) = (1 - 2v)/(2v - 1)
x(dv/dx) = -1
dv = -(dx/x)
On integrating both sides,
∫dv = -∫(dx/x)
v = -log|x| + log|c|
(y/x) + log|x| = log|c| (Where ‘c’ is integration constant)
Question 28. x(dy/dx) = y - xcos2(y/x)
Solution:
We have,
x(dy/dx) = y - xcos2(y/x)
(dy/dx) = y/x - cos2(y/x)
It is a homogeneous equation,
So, put y = vx (i)
On differentiating both sides w.r.t x,
dy/dx = v + x(dv/dx)
So,
v + x(dv/dx) = v - cos2(v)
x(dv/dx) = -cos2(v)
dv/cos2(v) = -(dx/x)
On integrating both sides,
∫dv/cos2(v) = -∫(dx/x)
∫sec2vdv = -∫(dx/x)
tan(v) = -log|x| + log|c|
tan(y/x) = log|c/x| (Where ‘c’ is integration constant)
Question 29. x(dy/dx) - y = 2√(y2 - x2)
Solution:
We have,
x(dy/dx) - y = 2√(y2 - x2)
(dy/dx) = [2√(y2 - x2) + y]/x
It is a homogeneous equation,
So, put y = vx (i)
On differentiating both sides w.r.t x,
dy/dx = v + x(dv/dx)
So,
v+x\frac{dv}{dx}=\frac{2\sqrt{v^2x^2-x^2}+vx}{x}
v+x\frac{dv}{dx}=2\sqrt{v^2-1}+v
x(dv/dx) = 2√(v2 - 1)
dv/√(v2 - 1) = 2(dx/x)
On integrating both sides,
∫dv/√(v2 - 1) = 2∫(dx/x)
log|v + √(v2- 1)| = 2log(x) + log(c)
|v + √(v2 - 1)| = |cx2|
\frac{y}{x}+\sqrt{\frac{y^2}{x^2}-1}=|cx^2|
y+\sqrt{y^2-x^2}=cx^3 (Where ‘c’ is integration constant)
Question 30. xcos(y/x)(ydx + xdy) = ysin(y/x)(xdy - ydx)
Solution:
We have,
xcos(y/x)(ydx + xdy) = ysin(y/x)(xdy - ydx)
xycos(y/x)dx + x2cos(y/x)dy = xysin(y/x)dy - y2sin(y/x)dx
x2cos(y/x)dy - xysin(y/x)dy = -y2sin(y/x)dx - xycos(y/x)dx
\frac{dy}{dx}=\frac{xysin(\frac{y}{x})+y^2cos(\frac{y}{x})}{xysin(\frac{y}{x})-x^2cos(\frac{y}{x})}
It is a homogeneous equation,
So, put y = vx (i)
On differentiating both sides w.r.t x,
dy/dx = v + x(dv/dx)
So,
v+x\frac{dv}{dx}=\frac{xvxsinv+v^2x^2cosv}{xvxsinv-x^2cosv}
v + x(dv/dx) = (vcosv + v2sinv)/(vsinv - cosv)
x(dv/dx) = [(vcosv + v2sinv)/(vsinv - cosv)] - v
x(dv/dx) = (vcosv + v2sinv - v2sinv + vcosv)/(vsinv - cosv)
x(dv/dx) = (2vcosv)/(vsinv - cosv)
[(vsinv - cosv)/(vcosv)]dv = 2(dx/x)
On integrating both sides,
∫tanvdv - ∫(dv/v) = 2log|x| + log|c|
log|secv| - log|v| = log|cx2|
log|(secv/v)| = log|cx2|
(x/y)sec(y/x) = cx2
sec(y/x) = cxy (Where ‘c’ is integration constant)
Question 31. (x2 + 3xy + y2)dx - x2dy = 0
Solution:
We have,
(x2 + 3xy + y2)dx - x2dy = 0
dy/dx = (x2 + 3xy + y2)/x2
It is a homogeneous equation,
So, put y = vx (i)
On differentiating both sides w.r.t x,
dy/dx = v + x(dv/dx)
So,
v + x(dv/dx) = (x2 + 3xvx + v2x2)/x2
v + x(dv/dx) = (1 + 3v + v2)
x(dv/dx) = (1 + 3v + v2) - v
x(dv/dx) = (1 + 2v + v2)
x(dv/dx) = (1 + v)2
dv/(1 + v)2 = (dx/x)
On integrating both sides,
∫dv/(1 + v)2 = ∫(dx/x)
-[1/(v + 1)] = log|x| - c
-\frac{1}{\frac{y}{x}+1}=log|x|-c
x/(x + y) + log|x| = c (Where ‘c’ is an integration constant)
Question 32. (x - y)(dy/dx) = (x + 2y)
Solution:
We have,
(x - y)(dy/dx) = (x + 2y)
(dy/dx) = (x + 2y)/(x - y)
It is a homogeneous equation,
So, put y = vx (i)
On differentiating both sides w.r.t x,
dy/dx = v + x(dv/dx)
So,
v + x(dv/dx) = (x + 2vx)/(x - vx)
v + x(dv/dx) = (1 + 2v)/(1 - v)
x(dv/dx) = [(1 + 2v)/(1 - v)] - v
x(dv/dx) = (1 + 2v - v + v2)/(1 - v)
x(dv/dx) = (1 + v + v2)/(1 - v)
(1 - v)dv/(1 + v + v2) = (dx/x)
On integrating both sides,
∫[(1 - v)/(1 + v + v2)]dv = ∫(dx/x)
-\frac{1}{2}∫\frac{2v-2}{v^2+v+1}dv=∫\frac{dx}{x}
∫\frac{(2v+1)-3}{v^2+v+1}dv=-2∫\frac{dx}{x}
∫\frac{2v+1}{v^2+v+1}dv-∫\frac{3dv}{v^2+2v(\frac{1}{2})+(\frac{1}{2})^2-(\frac{1}{2})^2+1}=-2log|x|+c
log|v^2+v+1|-∫\frac{3dv}{(v+\frac{1}{2})^2+(\frac{\sqrt{3}}{2})^2}=-log|x^2|+c
log|\frac{y^2}{x^2}+\frac{y}{x}+1|-3(\frac{2}{\sqrt{3}})tan^{-1}(\frac{v+\frac{1}{2}}{\frac{\sqrt{3}}{2}})+log|x^2|=c
log|y^2+xy+x^2|=2\sqrt{3}tan^{-1}(\frac{2y+x}{x\sqrt{3}})+c (Where ‘c’ is an integration constant)
Question 33. (2x2y + y3)dx + (xy2 - 3x2)dy = 0
Solution:
We have,
(2x2y + y3)dx + (xy2 - 3x2)dy = 0
dy/dx = (2x2y + y3)/(3x3 - xy2)
It is a homogeneous equation,
So, put y = vx (i)
On differentiating both sides w.r.t x,
dy/dx = v + x(dv/dx)
So,
v + x(dv/dx) = (2x2vx + v3x3)/(3x3 - xv2x2)
v + x(dv/dx) = (2v + v3)/(3 - v3)
x(dv/dx) = [(2v + v3)/(3 - v3)] - v
x(dv/dx) = (2v + v3 - 3v + v3)/(3 - v3)
(3 - v3)dv/(2v3 - v) = (dx/x)
On integrating both sides,
∫[(3 - v3)/(2v3 - v)]dv = ∫(dx/x)
∫\frac{3-v^2}{v(2v^2-1)}dv=∫\frac{dx}{x}
Using partial fraction,
\frac{3-v^2}{v(2v^2-1)}=\frac{A}{v}+\frac{Bv+C}{2v^2-1}
3 - v2 = A(2v2 - 1) + (Bv + C)v
3 - v2 = 2Av2 - A + Bv2 + Cv
3 - v2 = v2(2A + B) + Cv - A
On comparing the coefficients, we get
A = -3,
B = 5,
C = 0,
-3∫\frac{dv}{v}+∫\frac{5v}{2v^2-1}dv=∫\frac{dx}{x}
-3∫\frac{dv}{v}+\frac{5}{4}∫\frac{4v}{2v^2-1}dv=∫\frac{dx}{x}
-3log|v|+(5/4)log|2v2-1|=log|x|+log|c|
-12log|v|+5log|2v2-1|=4log|x|+4log|c|
log|\frac{2v^2-1}{v^{12}}|=log|x^4c^4|
(2\frac{y^2}{x^2}-1)^5=x^4c^4\frac{y^{12}}{x^{12}}
\frac{2y^2-x^2}{x^{10}}=x^4c^4\frac{y^{12}}{x^{12}}
|2y2 - x2|5 = x2c4y12 (Where ‘c’ is an integration constant)
Question 34. x(dy/dx) - y + xsin(y/x) = 0
Solution:
We have,
x(dy/dx) - y + xsin(y/x) = 0
x(dy/dx) = y - xsin(y/x)
(dy/dx) = [y - xsin(y/x)]/x
It is a homogeneous equation,
So, put y = vx (i)
On differentiating both sides w.r.t x,
dy/dx = v + x(dv/dx)
So,
v + x(dv/dx) = [vx - xsinv]/x
v + x(dv/dx) = (v - sinv)
x(dv/dx) = -sinv
cosecvdv = -(dx/x)
On integrating both sides,
∫cosecvdv = -∫(dx/x)
-log|cosecv + cotv| = -log|x| + log|c|
-log|(1/sinv) + (cosv/sinv)| = -log|x/c|
|(1 + cosv)/sinv| = |x/c|
xsinv = c(1 + cosv)
xsin(y/x) = c[1 + cos(y/x)] (Where ‘c’ is integration constant)
Question 35. ydx + {xlog(y/x)}dy - 2xydy = 0
Solution:
We have,
ydx + {xlog(y/x)}dy - 2xydy = 0
y + {xlog(y/x)}(dy/dx) - 2xy = 0
\frac{dy}{dx}=\frac{y}{2x-xlog(\frac{y}{x})}
It is a homogeneous equation,
So, put y = vx (i)
On differentiating both sides w.r.t x,
dy/dx = v + x(dv/dx)
So,
v+x\frac{dv}{dx}=-\frac{vx}{2x-xlogv}
v + x(dv/dx) = v/(2 - logv)
x(dv/dx) = [v/(2 - logv)] - v
x(dv/dx) = (v - 2v + vlogv)/(2 - logv)
x(dv/dx) = -v(logv - 1)/(logv - 2)
\frac{(logv-2)}{v(logv-1)}dv=-\frac{dx}{x}
On integrating both sides,
∫\frac{(logv-2)}{v(logv-1)}dv=-∫\frac{dx}{x}
∫\frac{(logv-1)-1}{v(logv-1)}dv=-∫\frac{dx}{x}
∫\frac{dv}{v(logv-1)}-∫\frac{dv}{v(logv-1)}=-∫\frac{dx}{x}
Let. logv - 1 = z
On differentiating both sides,
(dv/v) = dz
∫dz - ∫(dz/z) = -∫(dx/x)
z - log|z| = -log|x| + log|c|
(logv - 1) - log|(logv - 1)| = -log|x| + log|c|
logv - log|logv - 1| = -log|x| + log|c| + 1
log|(logv - 1)/v| = log|c1x|
|logv - 1| = |c1xv|
|log(y/x) - 1| = |c1x(y/x)|
|log(y/x) - 1| = |c1y| (Where ‘c1’ is integration constant)
Question 36(i). (x2 + y2)dx = 2xydy, y(1) = 0
Solution:
We have,
(x2 + y2)dx = 2xydy
(dy/dx) = (x2 + y2)/2xy
It is a homogeneous equation,
So, put y = vx (i)
On differentiating both sides w.r.t x,
dy/dx = v + x(dv/dx)
So,
v + x(dv/dx) = (x2 + v2x2)/2vx2
v + x(dv/dx) = (1 + v2)/2v
x(dv/dx) = [(1 + v2)/2v] - v
x(dv/dx) = (1 + v2 - 2v2)/2v
x(dv/dx) = (1 - v2)/2v
2vdv/(1 - v2) = (dx/x)
On integrating both sides,
∫2vdv/(1 - v2) = ∫(dx/x)
-log|1 - v2| = log|x| - log|c|
log|1 - v2| = log|c/x|
|1 - y2/x2| = |c/x|
|x2 - y2| = |cx|
At x = 1, y = 0
1 - 0 = c
c = 1
|x2 - y2| = |x|
(x2 - y2) = x
Question 36(ii). xex/y - y + x(dy/dx) = 0, y(e) = 0
Solution:
We have,
xex/y - y + x(dy/dx) = 0
(dy/dx) = (y - xex/y)/x
It is a homogeneous equation,
So, put y = vx (i)
On differentiating both sides w.r.t x,
dy/dx = v + x(dv/dx)
So,
v + x(dv/dx) = (vx - xev)/x
v + x(dv/dx) = v - ev
x(dv/dx) = v - ev - v
x(dv/dx) = -ev
e-vdv = -(dx/x)
On integrating both sides,
∫e-vdv = -∫(dx/x)
-e-v = -log|x| - log|c|
e-v = log|x| + log|c|
e-(y/x) = log|x| + log|c|
At x = e, y = 0
e-(0/e) = log|e| + log|c|
1 = 1 + log|c|
c = 0
e-y/x = logx
Question 36(iii). (dy/dx) - (y/x) + cosec(y/x) = 0, y(1) = 0
Solution:
We have,
(dy/dx) - (y/x) + cosec(y/x) = 0
(dy/dx) = (y/x) - cosec(y/x)
It is a homogeneous equation,
So, put y = vx (i)
On differentiating both sides w.r.t x,
dy/dx = v + x(dv/dx)
So,
v + x(dv/dx) = v - cosec(v)
x(dv/dx) = v - cosec(v) - v
x(dv/dx) = -cosec(v)
-sin(v)dv = (dx/x)
On integrating both sides,
-∫sin(v)dv = ∫(dx/x)
cos(v) = log|x| + log|c|
cos(y/x) = log|x| + log|c|
At x = 1, y = 0
cos(0/1) = log|1| + log|c|
1 = 0 + log|c|
log|c| = 1
cos(y/x) = log|x| + 1
log|x| = cos(y/x) - 1
Question 36(iv). (xy - y2)dx - x2dy = 0, y(1) = 1
Solution:
We have,
(xy - y2)dx - x2dy = 0
(dy/dx) = (xy - y2)/x2
(dy/dx) = (y/x) - (y2/x2)
It is a homogeneous equation,
So, put y = vx (i)
On differentiating both sides w.r.t x,
dy/dx = v + x(dv/dx)
So,
v + x(dv/dx) = v - v2
x(dv/dx) = v - v2 - v
x(dv/dx) = -v2
-(dv/v2) = (dx/x)
On integrating both sides,
-∫(dv/v2) = ∫(dx/x)
-(-1/v) = log|x| + c
(1/v) = log|x| + c
x/y = log|x| + c
At x = 1, y = 1
1 = log|1| + c
c = 1
x/y = log|x| + 1
y = x/[log|x| + 1]
Question 36(v). (dy/dx) = [y(x + 2y)]/[x(2x + y)]
Solution:
We have,
(dy/dx) = [y(x + 2y)]/[x(2x + y)]
It is a homogeneous equation,
So, put y = vx (i)
On differentiating both sides w.r.t x,
dy/dx = v + x(dv/dx)
So,
v + x(dv/dx) = [vx(x + 2vx)]/[x(2x + vx]
x(dv/dx) = [vx(x + 2vx)]/[x(2x + vx] - v
x(dv/dx) = (v + 2v2 - 2v - v2)/(2 + v)
x(dv/dx) = (v2 - v)/(2 + v)
(2 + v)dv/[v(v - 1)] = (dx/x)
On integrating both sides,
∫\frac{2+v}{v(v-1)}dv=\frac{dx}{x}
Using partial derivative,
\frac{2+v}{v(v-1)}dv=\frac{A}{v}+\frac{B}{v-1}
2 + v = A(v - 1) + B(v)
2 + v = v(A + B) - A
On comparing the coefficients,
A = -2
B = 3
-2∫(dv/v) + 3∫dv/(v - 1) = ∫(dx/x)
-2log|v| + 3log|v - 1| = log|x| + log|c|
log|(v - 1)3/v2| = log|xc|
(v - 1)3 = v2|xc|
(y - x)3/x3 = (y/x)2|xc|
(y - x)3 = y2x2c
At x = 1, y = 2,
(2 - 1)3 = 4 * 1 * c
c = (1/4)
(y - x)3 = (1/4)y2x2
Question 36(vi). (y4 - 2x3y)dx + (x4 - 2xy3)dy = 0, y(1) = 0
Solution:
We have,
(y4 - 2x3y)dx + (x4 - 2xy3)dy = 0
dy/dx = (2x3y - y4)/(x4 - 2xy3)
It is a homogeneous equation,
So, put y = vx (i)
On differentiating both sides w.r.t x,
dy/dx = v + x(dv/dx)
So,
v + x(dv/dx) = (2x3vx - v4x4)/(x4 - 2xv3x3)
v + x(dv/dx) = (2v - v4)/(1 - 2v3)
x(dv/dx) = [(2v - v4)/(1 - 2v3)] - v
x(dv/dx) = (2v - v4 - v + 2v4)/(1 - 2v3)
x(dv/dx) = (v + v4)/(1 - 2v3)
\frac{1-2v^3}{v(1+v^3)}dv=\frac{dx}{x}
\frac{1+v^3-3v^3}{v(1+v^3)}dv=\frac{dx}{x}
On integrating both sides,
∫\frac{1+v^3}{v(1+v^3)}dv-∫\frac{3v^3}{v(1+v^3)}dv=∫\frac{dx}{x}
∫(dv/v) - ∫(3v2)dv/(1 + v3) = log|x| + log|c|
log|v| - log|1 + v3| = log|xc|
log|v/(1 + v3)| = log|xc|
\frac{\frac{y}{x}}{1+(\frac{y}{x})^3}=|cx|
At x = 1, y = 1,
1/(1 + 1) = c
c = (1/2)
(yx2)/(x3 + y3) = (1/2)x
Question 36(vii). x(x2 + 3y2)dx + y(y2 + 3x2)dy = 0, y(1) = 1
Solution:
We have,
x(x2 + 3y2)dx + y(y2 + 3x2)dy = 0
dy/dx = -[x(x2 + 3y2)/y(y2 + 3x2)]
It is a homogeneous equation,
So, put y = vx (i)
On differentiating both sides w.r.t x,
dy/dx = v + x(dv/dx)
So,
v+x\frac{dv}{dx}=-\frac{x(x^2+3v^2x^2)}{vx(v^2x^2+3x^2)}
v+x\frac{dv}{dx}=-\frac{(1+3v^2)}{v(v^2+3)}
x\frac{dv}{dx}=-\frac{(1+3v^2)}{v(v^2+3)}-v
x(dv/dx) = -(1 + 3v2 + v4 + 3v2)/v(v2 + 3)
[(v3 + 3v)/(1 + 6v2 + v4)]dv = -(dx/x)
Multiply both sides with 4 and integrating,
∫\frac{4v^3+12v}{v^4+6v^2+1}dv=-4∫\frac{dx}{x}
log|v4 + 6v2 + 1| = -log|x|4 + log|c|
|v4 + 6v2 + 1| = |c/x4|
(y4 + 6x2y2 + x4) = c
At y = 1, x = 1
(1 + 6 + 1) = c
c = 8
(y4 + 6x2y2 + x4) = 8
Question 36(viii). {xsin2(y/x) - y}dx + xdy = 0, y(1) = π/4
Solution:
We have,
{xsin2(y/x) - y}dx + xdy = 0
dy/dx = [y - xsin2(y/x)]/x
dy/dx = (y/x) - sin2(y/x)
It is a homogeneous equation,
So, put y = vx (i)
On differentiating both sides w.r.t x,
dy/dx = v + x(dv/dx)
So,
v + x(dv/dx) = v - sin2(v)
x(dv/dx) = v - sin2(v) - v
x(dv/dx) = -sin2(v)
-cosec2(v)dv = (dx/x)
On integrating both sides,
-∫cosec2(v) = ∫(dx/x)
cot(v) = log|x| + log|c|
cot(y/x) = log|xc|
At x = 1, y = π/4
cot(π/4) = log|c|
log|c| = 1
c = e
cot(y/x) = log|ex|
Question 36(ix). x(dy/dx) - y + xsin(y/x) = 0, y(2) = π
Solution:
We have,
x(dy/dx) - y + xsin(y/x) = 0
x(dy/dx) = y - xsin(y/x)
(dy/dx) = (y/x) - sin(y/x)
It is a homogeneous equation,
So, put y = vx (i)
On differentiating both sides w.r.t x,
dy/dx = v + x(dv/dx)
So,
v + x(dv/dx) = v - sin(v)
x(dv/dx) = v - sin(v) - v
x(dv/dx) = -sin(v)
-cosec(v)dv = (dx/x)
On integrating both sides,
∫cosec(v) = -∫(dx/x)
log|cosec(v) - cot(v)| = -log|x| + log|c|
log|cosec(v) - cot(v)| = -log|x| + log|c|
log|cosec(y/x) - cot(y/x)| = -log|x| + log|c|
At x = 2, y = π
|cosec(π/2) - cot(π/2)| = -log|2| + log|c|
log|c| = 0
log|cosec(y/x) - cot(y/x)| = -log|x|
Question 37. xcos(y/x)(dy/dx) = ycos(y/x) + x, When x = 1, y = π/4
Solution:
We have,
xcos(y/x)(dy/dx) = ycos(y/x) + x
\frac{dy}{dx}=\frac{ycos(\frac{y}{x})+x}{xcos(\frac{y}{x})}
(dy/dx) = (y/x) + [1/cos(y/x)]
So, put y = vx (i)
On differentiating both sides w.r.t x,
dy/dx = v + x(dv/dx)
So,
v + x(dv/dx) = v + 1/cosv
x(dv/dx) = v + 1/cosv - v
x(dv/dx) = 1/cosv
cosvdv = (dx/x)
On integrating both sides,
∫cosvdv = ∫(dx/x)
sin(v) = log|x| + log|c|
sin(y/x) = log|x| + log|c|
At x = 1, y = π/4
1/√2 = 0 + log|c|
log|c| = (1/√2)
sin(y/x) = log|x| + (1/√2)
Question 38. (x - y)(dy/dx) = (x + 2y), when x = 1,y = 0
Solution:
We have,
(x - y)(dy/dx) = (x + 2y)
(dy/dx) = (x + 2y)/(x - y)
It is a homogeneous equation,
So, put y = vx (i)
On differentiating both sides w.r.t x,
dy/dx = v + x(dv/dx)
So,
v + x(dv/dx) = (x + 2vx)/(x - vx)
v + x(dv/dx) = (1 + 2v)/(1 - v)
x(dv/dx) = [(1 + 2v)/(1 - v)] - v
x(dv/dx) = (1 + 2v - v + v2)/(1 - v)
(1 - v)dv/(1 + v + v2) = (dx/x)
On integrating both sides,
∫\frac{1-v}{1+v+v^2}dv=\frac{dx}{x}
\frac{1}{2}∫\frac{2-2v}{1+v+v^2}dv=∫\frac{dx}{x}
∫\frac{3-(1+2v)}{1+v+v^2}dv=∫\frac{dx}{x}
\frac{3}{2}∫\frac{dv}{1+v+v^2}-\frac{1}{2}∫\frac{2v+1}{1+v+v^2}dv=∫\frac{dx}{x}
\frac{3}{2}∫\frac{dv}{(v+\frac{1}{2})^2+(\frac{\sqrt{3}}{2})^2}-\frac{1}{2}log|v^2+v+1|=log|x|+c
\sqrt{3}tan^{-1}(\frac{v+\frac{1}{2}}{\frac{\sqrt{3}}{2}})-\frac{1}{2}log|v^2+v+1|=log|x|+c
\sqrt{3}tan^{-1}(\frac{2y+1}{\sqrt{3}x})-\frac{1}{2}log|\frac{x^2+xy+y^2}{x^2}|=log|x|+c
\sqrt{3}tan^{-1}(\frac{2y+1}{\sqrt{3}x})-\frac{1}{2}log|x^2+xy+y^2|+log|x|=log|x|+c
\sqrt{3}tan^{-1}(\frac{2y+1}{\sqrt{3}x})-\frac{1}{2}log|x^2+xy+y^2|=c
At x = 1, y = 0
√3tan-1|1/√3| - (1/2)log|1| = c
c = √3(π/6)
c = (π/2√3)
\sqrt{3}tan^{-1}(\frac{2y+1}{\sqrt{3}x})-\frac{1}{2}log|x^2+xy+y^2|=\frac{π}{2\sqrt{3}}
\frac{1}{2}log|x^2+xy+y^2|=2\sqrt{3}tan^{-1}(\frac{2y+1}{\sqrt{3}x})-\frac{π}{\sqrt{3}}
Question 39. (dy/dx) = xy/(x2 + y2)
Solution:
We have,
(dy/dx) = xy/(x2 + y2)
It is a homogeneous equation,
So, put y = vx (i)
On differentiating both sides w.r.t x,
dy/dx = v + x(dv/dx)
So,
v + x(dv/dx) = xvx/(x2 + v2x2)
v + x(dv/dx) = v/(1 + v2)
x(dv/dx) = [v/(1 + v2)] - v
x(dv/dx) = (v - v - v3)/(1 + v2)
[-(1/v3) - (1/v)]dv = (dx/x)
On integrating both sides,
-∫dv/v3 - ∫dv/v = ∫(dx/x)
(1/2v2) - log|v| = log|x| + c
(x2/2y2) = log|vx| + c
(x2/2y2) = log|(y/x)x| + c
(x2/2y2) = log|y| + c
At x = 0, y = 1
c = 0
(x2/2y2) = log|y|
Explore
Basic Arithmetic
Algebra
Geometry
Trigonometry & Vector Algebra
Calculus
Probability and Statistics
Practice