Open In App

Class 12 RD Sharma Solutions- Chapter 5 Algebra of Matrices - Exercise 5.4

Last Updated : 20 Aug, 2024
Comments
Improve
Suggest changes
Like Article
Like
Report

Chapter 5 of RD Sharma's Class 12 Mathematics textbook focuses on the Algebra of Matrices. Exercise 5.4 specifically deals with elementary operations on matrices and their properties. This exercise is crucial for understanding how matrices can be manipulated and transformed, which is fundamental in various fields of mathematics and its applications.

Question 1: Let A = \begin{bmatrix} 2 & -3 \\ -7 & 5 \end{bmatrix}    and B = \begin{vmatrix} 1 & 0 \\ 2 & -4 \end{vmatrix}    verify that

(i) (2A)T = 2AT

(ii) (A + B)T = AT + BT

(iii) (A − B)T = AT − BT

(iv) (AB)T = BT AT

Solution:

(i) Given: A = \begin{bmatrix} 2 & -3 \\ -7 & 5 \end{bmatrix}    and B = \begin{bmatrix} 1 & 0 \\ 2 & -4 \end{bmatrix}  

Assume,

(2A)T = 2AT

Substitute the value of A

\left (2 \begin{bmatrix} 2 & -3 \\ -7 & 5 \end{bmatrix}  \right )^T = 2\begin{bmatrix} 2 & -3 \\ -7 & 5 \end{bmatrix}^T\\ \begin{bmatrix} 4 & -6 \\ -14 & 10 \end{bmatrix}^T=2\begin{bmatrix} 2 & -7 \\ -3 & 5 \end{bmatrix}\\ \begin{bmatrix} 4 & -14 \\ -6 & 10 \end{bmatrix}=\begin{bmatrix} 4 & -14 \\ -6 & 10 \end{bmatrix}  

L.H.S = R.H.S

Hence, proved.

(ii) Given: A = \begin{bmatrix} 2 & -3 \\ -7 & 5 \end{bmatrix}    and B = \begin{bmatrix} 1 & 0 \\ 2 & -4 \end{bmatrix}

Assume,

(A+B)T = AT + BT

\left(\begin{bmatrix} 2 & -3 \\ -7 & 5 \end{bmatrix} +\begin{bmatrix} 1 & 0 \\ 2 & -4 \end{bmatrix} \right )^T=\begin{bmatrix} 2 & -3 \\ -7 & 5 \end{bmatrix} ^T+\begin{bmatrix} 1 & 0 \\ 2 & -4 \end{bmatrix}^T\\ \begin{bmatrix} 2+1 & -3+0 \\ -7+2 & 5-4 \end{bmatrix}=\begin{bmatrix} 2 & -7 \\ -3 & 5 \end{bmatrix}+\begin{bmatrix} 1 & 2 \\ 0 & -4 \end{bmatrix}\\ \begin{bmatrix} 3 & -3 \\ -5 & 1 \end{bmatrix}^T=\begin{bmatrix} 3 & -5 \\ -3 & 1 \end{bmatrix}\\ \begin{bmatrix} 3 & -5 \\ -3 & 1 \end{bmatrix}=\begin{bmatrix} 3 & -5 \\ -3 & 1 \end{bmatrix}  

L.H.S = R.H.S

Hence, proved.

(iii) Given: A= \begin{bmatrix} 2 & -3 \\ -7 & 5 \end{bmatrix}    and B= \begin{bmatrix} 1 & 0 \\ 2 & -4 \end{bmatrix}

Assume,

(A − B)T = AT − BT

\left(\begin{bmatrix} 2 & -3 \\ -7 & 5 \end{bmatrix}-\begin{bmatrix} 1 & 0 \\ 2 & -4 \end{bmatrix} \right)^T=\begin{bmatrix} 2 & -3 \\ -7 & 5 \end{bmatrix}^T-\begin{bmatrix} 1 & 0 \\ 2 & -4 \end{bmatrix}^T\\ \begin{bmatrix} 2-1 & -3-0 \\ -7-2 & 5+4 \end{bmatrix}^T=\begin{bmatrix} 2 & -7 \\ -3 & 5 \end{bmatrix}-\begin{bmatrix} 1 & 2 \\ 0 & -4 \end{bmatrix}\\ \begin{bmatrix} 1 & -3 \\ -9 & 9 \end{bmatrix}^T=\begin{bmatrix} 1 & -9 \\ -3 & 9 \end{bmatrix}\\ \begin{bmatrix} 1 & -9 \\ -3 & 9 \end{bmatrix}=\begin{bmatrix} 1 & -9 \\ -3 & 9 \end{bmatrix}

L.H.S = R.H.S

Hence, proved

(iv) Given: A = \begin{bmatrix} 2 & -3 \\ -7 & 5 \end{bmatrix}    and B = \begin{bmatrix} 1 & 0 \\ 2 & -4 \end{bmatrix}

Assume,

(AB)T = BTAT

\left(\begin{bmatrix} 2 & -3 \\ -7 & 5 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 2 & -4 \end{bmatrix}\right)^T=\begin{bmatrix} 1 & 0 \\ 2 & -4 \end{bmatrix}^T\begin{bmatrix} 2 & -3 \\ -7 & 5 \end{bmatrix}^T\\ \begin{bmatrix} 2-6 & 0+12 \\ -7+10 & 0-20 \end{bmatrix}^T=\begin{bmatrix} 1 & 2 \\ 0 & -4 \end{bmatrix}\begin{bmatrix} 2 & -3 \\ -7 & 5 \end{bmatrix}\\ \begin{bmatrix} -4 & 3 \\ 12 & -20 \end{bmatrix}=\begin{bmatrix} -4 & 3 \\ 12 & -20 \end{bmatrix}  

Therefore, (AB)T = BTAT

Hence, proved.

Question 2: A = \begin{bmatrix}3\\5\\2\end{bmatrix}  and B = \begin{bmatrix}1&0&4\end{bmatrix} Verify that (AB)T = BTAT

Solution:

Given: A = \begin{bmatrix}3\\5\\2\end{bmatrix}  and B = \begin{bmatrix}1&0&4\end{bmatrix}

Assume,

(AB)T = BTAT

\left(\begin{bmatrix}3\\5\\2\end{bmatrix}\begin{bmatrix}1&0&4\end{bmatrix}\right)^T=\begin{bmatrix}1&0&4\end{bmatrix}^T\begin{bmatrix}3\\5\\2\end{bmatrix}^T\\ \begin{bmatrix}3&0&12\\5&0&20\\2&0&8\end{bmatrix}^T=\begin{bmatrix}1\\0\\4\end{bmatrix}\begin{bmatrix}3&5&2\end{bmatrix}\\ \begin{bmatrix}3&5&2\\0&0&0\\12&20&8\end{bmatrix}=\begin{bmatrix}3&5&2\\0&0&0\\12&20&8\end{bmatrix}

L.H.S = R.H.S

Hence proved

Question 3: Let A = \begin{bmatrix}1&-1&0\\2&1&3\\1&2&1\end{bmatrix}  and B = \begin{bmatrix}1&2&3\\2&1&3\\0&1&1\end{bmatrix}

Find AT, BT and verify that

(i) (A + B)T = AT + BT

(ii) (AB)T = BTAT

(iii) (2A)T = 2AT

Solution:

(i) Given: A = \begin{bmatrix}1&-1&0\\2&1&3\\1&2&1\end{bmatrix}

and B = \begin{bmatrix}1&2&3\\2&1&3\\0&1&1\end{bmatrix}

Assume

(A + B)T = AT + BT

\left(\begin{bmatrix}1&-1&0\\2&1&3\\1&2&1\end{bmatrix}+\begin{bmatrix}1&2&3\\2&1&3\\0&1&1\end{bmatrix}\right)^T=\begin{bmatrix}1&-1&0\\2&1&3\\1&2&1\end{bmatrix}+\begin{bmatrix}1&2&3\\2&1&3\\0&1&1\end{bmatrix}^T\\ \begin{bmatrix}1+1&-1+2&0+3\\2+2&1+1&3+3\\1+0&2+1&1+1\end{bmatrix}^T=\begin{bmatrix}1&2&1\\-1&1&2\\0&3&1\end{bmatrix}+\begin{bmatrix}1&2&0\\2&1&1\\3&3&1\end{bmatrix}\\ \begin{bmatrix}2&1&3\\4&2&6\\1&3&2\end{bmatrix}^T=\begin{bmatrix}1+1&2+2&1+0\\-1+2&1+1&2+1\\0+3&3+3&1+1\end{bmatrix}\\ \begin{bmatrix}2&4&1\\1&2&3\\3&6&2\end{bmatrix}=\begin{bmatrix}2&4&1\\1&2&3\\3&6&2\end{bmatrix}

L.H.S = R.H.S

Hence proved

(ii) Given: A = \begin{bmatrix}1&-1&0\\2&1&3\\1&2&1\end{bmatrix}  and B = \begin{bmatrix}1&2&3\\2&1&3\\0&1&1\end{bmatrix}

Assume,

\left(\begin{bmatrix}1&-1&0\\2&1&3\\1&2&1\end{bmatrix}\begin{bmatrix}1&2&3\\2&1&3\\0&1&1\end{bmatrix}\right)^T=\begin{bmatrix}1&2&3\\2&1&3\\0&1&1\end{bmatrix}^T\begin{bmatrix}1&-1&0\\2&1&3\\1&2&1\end{bmatrix}^T\\ \begin{bmatrix}1-2+0&2-1+0&3-3+0\\2+2+0&4+1+3&6+3+3\\1+4+0&2+2+1&3+6+1\end{bmatrix}^T=\begin{bmatrix}1&2&0\\2&1&1\\3&3&1\end{bmatrix}\begin{bmatrix}1&2&1\\-1&1&2\\0&3&1\end{bmatrix}\\ \begin{bmatrix}-1&1&0\\4&8&12\\5&5&10\end{bmatrix}^T=\begin{bmatrix}1-2+0&2+2+0&1+4+0\\2-1+0&4+1+3&2+2+1\\3-3+0&6+3+3&3+6+1\end{bmatrix}\\ \begin{bmatrix}-1&4&5\\1&8&5\\0&12&10\end{bmatrix}=\begin{bmatrix}-1&4&5\\1&8&5\\0&12&10\end{bmatrix}

(AB)T = BTAT

\begin{bmatrix}-1&4&5\\1&8&5\\0&12&10\end{bmatrix}=\begin{bmatrix}-1&4&5\\1&8&5\\0&12&10\end{bmatrix}

L.H.S =R.H.S

Hence proved

(iii) Given: A = \begin{bmatrix}1&-1&0\\2&1&3\\1&2&1\end{bmatrix}  and B = \begin{bmatrix}1&2&3\\2&1&3\\0&1&1\end{bmatrix}

Assume,

(2A)T = 2AT

\left(2\begin{bmatrix}1&-1&0\\2&1&3\\1&2&1\end{bmatrix}\right)^T=2\begin{bmatrix}1&-1&0\\2&1&3\\1&2&1\end{bmatrix}^T\\ \begin{bmatrix}2&-2&0\\4&2&6\\2&4&2\end{bmatrix}^T=2\begin{bmatrix}1&2&1\\-1&1&2\\0&3&1\end{bmatrix}\\ \begin{bmatrix}2&4&2\\-2&2&4\\0&6&2\end{bmatrix}=\begin{bmatrix}2&4&2\\-2&2&4\\0&6&2\end{bmatrix}

L.H.S = R.H.S

Hence proved

Question 4: if A = \begin{bmatrix}-2\\4\\5\end{bmatrix}, B = \begin{bmatrix}1&3&-6\end{bmatrix}, verify that (AB)T = BTAT

Solution:

Given: A = \begin{bmatrix}-2\\4\\5\end{bmatrix}  and B = \begin{bmatrix}1&3&-6\end{bmatrix}

Assume,

(AB)T = BTAT

\left(\begin{bmatrix}-2\\4\\5\end{bmatrix}\begin{bmatrix}1&3&-6\end{bmatrix}\right)^T=\begin{bmatrix}1&3&-6\end{bmatrix}^T\begin{bmatrix}-2\\4\\5\end{bmatrix}^T\\ \begin{bmatrix}-2&-6&-12\\4&12&-24\\-5&15&-30\end{bmatrix}^T=\begin{bmatrix}1\\3\\-6\end{bmatrix}\begin{bmatrix}-2&4&5\end{bmatrix}\\ \begin{bmatrix}-2&4&5\\-6&12&15\\-12&-24&-30\end{bmatrix}=\begin{bmatrix}-2&4&5\\-6&12&15\\-12&-24&-30\end{bmatrix}

L.H.S = R.H.S

Hence proved

Question 5: If A = \begin{bmatrix}2&4&-1\\-1&0&2\end{bmatrix}and B = \begin{bmatrix}3&4\\-1&2\\2&1\end{bmatrix}, find (AB)T

Solution:

Given: A = \begin{bmatrix}2&4&-1\\-1&0&2\end{bmatrix}  and B = \begin{bmatrix}3&4\\-1&2\\2&1\end{bmatrix}

Here we have to find (AB)T

\left(\begin{bmatrix}2&4&-1\\-1&0&2\end{bmatrix}\begin{bmatrix}3&4\\-1&2\\2&1\end{bmatrix}\right)^T\\ \begin{bmatrix}6-4-2&8+8-1\\-3-0+4&-4+0+2\end{bmatrix}^T\\ \begin{bmatrix}0&15\\1&-2\end{bmatrix}^T\\ \begin{bmatrix}0&1\\15&-2\end{bmatrix}

Hence,

(AB)T\begin{bmatrix}0&1\\15&-2\end{bmatrix}

Question 6: 

(i) For two matrices A and B, A=\begin{bmatrix}2&1&3\\4&1&0\end{bmatrix},\ B=\begin{bmatrix}1&-1\\0&2\\5&0\end{bmatrix},  verify that (AB)T = BTAT

Solution:

Given,

A=\begin{bmatrix}2&1&3\\4&1&0\end{bmatrix},\ B=\begin{bmatrix}1&-1\\0&2\\5&0\end{bmatrix}

(AB)T = BTAT

⇒ \left(\begin{bmatrix}2&1&3\\4&1&0\end{bmatrix}\begin{bmatrix}1&-1\\0&2\\5&0\end{bmatrix}\right)^T=A=\begin{bmatrix}1&-1&\\0&2\\5&0\end{bmatrix}^T\begin{bmatrix}2&1&3\\4&1&0\end{bmatrix}^T

⇒ \begin{bmatrix}2+0+15&-2+20\\4+0+0&-4+2+0\end{bmatrix}^T=\begin{bmatrix}1&0&5\\-1&2&0\end{bmatrix}\begin{bmatrix}2&4\\1&1\\3&0\end{bmatrix}

⇒ \begin{bmatrix}17&0\\4&-2\end{bmatrix}^T=\begin{bmatrix}2+0+15&4+0+0\\-2+2+0&-4+2+0\end{bmatrix}

⇒ \begin{bmatrix}17&4\\0&-2\end{bmatrix}=\begin{bmatrix}17&4\\0&-2\end{bmatrix}

⇒ L.H.S = R.H.S

Hence,

(AB)T = BTAT

(ii) For the matrices A and B, verify that (AB)T = BTAT, where

A=\begin{bmatrix}1&3\\2&4\end{bmatrix},\ B=\begin{bmatrix}1&4\\2&5\end{bmatrix}

Solution:

Given,

A=\begin{bmatrix}1&3\\2&4\end{bmatrix},\ B=\begin{bmatrix}1&4\\2&5\end{bmatrix}

(AB)T = BTAT

⇒ \left(\begin{bmatrix}1&3\\2&4\end{bmatrix}\begin{bmatrix}1&4\\2&5\end{bmatrix}\right)^T=\begin{bmatrix}1&4&\\2&5\end{bmatrix}^T\begin{bmatrix}1&3\\2&4\end{bmatrix}^T

⇒ \begin{bmatrix}1+6&4+15\\2+8&8+20\end{bmatrix}^T=\begin{bmatrix}1&2\\4&5\end{bmatrix}\begin{bmatrix}1&2\\3&4\end{bmatrix}

⇒ \begin{bmatrix}7&19\\10&28\end{bmatrix}^T=\begin{bmatrix}1+6&2+8\\4+15&8+20\end{bmatrix}

⇒ \begin{bmatrix}7&10\\19&28\end{bmatrix}=\begin{bmatrix}7&10\\19&28\end{bmatrix}

⇒ L.H.S = R.H.s

So,

(AB)T = BTAT

Question 7: Find A^T=\begin{bmatrix}3&4\\-1&2\\0&1\end{bmatrix}\ and\ B=\begin{bmatrix}-1&2&1\\1&2&3\end{bmatrix}, AT - BT

Solution:

Given that A^T=\begin{bmatrix}3&4\\-1&2\\0&1\end{bmatrix}\ and\ B=\begin{bmatrix}-1&2&1\\1&2&3\end{bmatrix}

We need to find AT - BT.

Given that, B=\begin{bmatrix}-1&2&1\\1&2&3\end{bmatrix}

 B^T=\begin{bmatrix}-1&2&1\\1&2&3\end{bmatrix}^T=\begin{bmatrix}-1&1\\2&2\\1&3\end{bmatrix}

Let us find AT - BT

⇒ A^T-B^T=\begin{bmatrix}3&4\\-1&2\\0&1\end{bmatrix}-\begin{bmatrix}-1&1\\2&2\\1&3\end{bmatrix}

⇒ A^T-B^T=\begin{bmatrix}3+1&4-1\\-1-2&2-2\\0-1&1-3\end{bmatrix}

⇒ A^T-B^T=\begin{bmatrix}4&3\\-3&0\\-1&-2\end{bmatrix}

Question 8: If A=\begin{bmatrix}cos\alpha&sin\alpha\\-sin\alpha&cos\alpha\end{bmatrix}, then verify that A'A = 1

Solution:

A=\begin{bmatrix}cos\alpha&sin\alpha\\-sin\alpha&cos\alpha\end{bmatrix}

\therefore A'=\begin{bmatrix}cos\alpha&-sin\alpha\\sin\alpha&cos\alpha\end{bmatrix}

A'A=\begin{bmatrix}cos\alpha&-sin\alpha\\sin\alpha&cos\alpha\end{bmatrix}\begin{bmatrix}cos\alpha&sin\alpha\\-sin\alpha&cos\alpha\end{bmatrix}

⇒ \begin{bmatrix}(cos\alpha) (cos\alpha)+(-sin\alpha)(-sin\alpha)&(cos\alpha)(sin\alpha)+(-sin\alpha)(cos\alpha)\\(sin\alpha)(cos\alpha)+(cos\alpha)(-sin\alpha)&(sin\alpha)(sin\alpha)+(cos\alpha)(cos\alpha)\end{bmatrix}

⇒ \begin{bmatrix}cos^2\alpha+sin^2\alpha&sin\alpha cos\alpha-sin\alpha cos\alpha\\sin\alpha cos\alpha-sin\alpha cos\alpha&sin^2\alpha+cos^2\alpha\end{bmatrix}

⇒ \begin{bmatrix}1&0\\0&1\end{bmatrix}=I

Hence,we have verified that A'A = I

Question 9: A=\begin{bmatrix}sin\alpha&cos\alpha\\-cos\alpha&sin\alpha\end{bmatrix}, then verify that A'A = I

Solution:

A=\begin{bmatrix}sin\alpha&cos\alpha\\-cos\alpha&sin\alpha\end{bmatrix}\\ \therefore\ A'=\begin{bmatrix}sin\alpha&-cos\alpha\\cos\alpha&sin\alpha\end{bmatrix}\\ A'A=\begin{bmatrix}sin\alpha&-cos\alpha\\cos\alpha&sin\alpha\end{bmatrix}\begin{bmatrix}sin\alpha&cos\alpha\\-cos\alpha&sin\alpha\end{bmatrix}

=\begin{bmatrix}(sin\alpha)(sin\alpha)+(-cos\alpha)(-cos\alpha)&(sin\alpha)(cos\alpha)+(-cos\alpha)(sin\alpha)\\(cos\alpha)(sin\alpha)+(sin\alpha)(-cos\alpha)&(cos\alpha)(cos\alpha)+(sin\alpha)(sin\alpha)\end{bmatrix}

=\begin{bmatrix}sin^2\alpha+cos^2\alpha&sin\alpha cos\alpha-sin\alpha cos\alpha\\sin\alpha cos\alpha-sin\alpha cos\alpha&cos^2\alpha+sin^2\alpha\end{bmatrix}

=\begin{bmatrix}1&0\\0&1\end{bmatrix}=I

Hence, we have verified that A'A = I

Question 10: If li, mi, ni ; i = 1, 2, 3 denote the direction cosines of three mutually perpendicular vectors in space, prove that AAT = I,

Where A=\begin{bmatrix}l_1&m_1&n_1\\l_2&m_2&n_2\\l_3&m_3&n_3\end{bmatrix}

Solution:

Given,

li, mi, ni are direction cosines of three mutually perpendicular vectors

⇒  \left.\begin{aligned}  l_1l_2+m_1m_2+n_1n_2=0\\  l_2l_3+m_2m_3+n_2n_3=0\\  l_1l_3+m_1m_3+n_1n_3=0 \end{aligned}\right\}\ \ \ \ \ \ --- (A)

And,

 \left.\begin{aligned}  l_1^2+m_1^2+n_1^2=1\\  l_2^2+m_2^2+n_2^2=1\\  l_3^2+m_3^2+n_3^2=1 \end{aligned}\right\}\ \ \ \ \ ---(B)

Given,

A=\begin{bmatrix}l_1&m_1&n_1\\ l_2&m_2&n_2\\ l_3&m_3&n_3\end{bmatrix}

AA^T=\begin{bmatrix}l_1&m_1&n_1\\ l_2&m_2&n_2\\ l_3&m_3&n_3\end{bmatrix}\begin{bmatrix}l_1&m_1&n_1\\ l_2&m_2&n_2\\ l_3&m_3&n_3\end{bmatrix}^T\\ =\begin{bmatrix}l_1&m_1&n_1\\ l_2&m_2&n_2\\ l_3&m_3&n_3\end{bmatrix}\begin{bmatrix}l_1&l_2&l_3\\ m_1&m_2&m_3\\ n_1&n_2&n_3\end{bmatrix}

\begin{bmatrix}l_1^2+m_1^2+n_1^2&l_1l_2+m_1m_2+n_1n_2&l_1l_3+m_1m_3+n_1n_3\\ l_1l_2+m_1m_2+n_1n_2&l_2^2+m_2^2+n_2^2&l_2l_3+m_2m_3+n_2n_3\\ l_1l_3+m_1m_3+n_1n_3&l_3l_2+m_3m_2+n_3n_2&l_3^2+m_3^2+n_3^2\end{bmatrix}

\begin{bmatrix}1&0&0\\ 0&1&0\\ 0&0&1\end{bmatrix}\ \ \ \ \ \ \ [using\ (A)\ and\ (B)]

= I

Hence,

AAT = I

Summary

Exercise 5.4 covers the following key topics:

Elementary row operations

Elementary column operations

Properties of elementary operations

Equivalence of matrices

Row-reduced echelon form

Applications of elementary operations in solving systems of linear equations

These concepts are essential for more advanced topics in linear algebra and have practical applications in fields such as computer graphics, economics, and engineering.


Explore