Class 12 RD Sharma Solutions- Chapter 5 Algebra of Matrices - Exercise 5.4
Last Updated :
20 Aug, 2024
Chapter 5 of RD Sharma's Class 12 Mathematics textbook focuses on the Algebra of Matrices. Exercise 5.4 specifically deals with elementary operations on matrices and their properties. This exercise is crucial for understanding how matrices can be manipulated and transformed, which is fundamental in various fields of mathematics and its applications.
Question 1: Let A = \begin{bmatrix} 2 & -3 \\ -7 & 5 \end{bmatrix} and B = \begin{vmatrix} 1 & 0 \\ 2 & -4 \end{vmatrix} verify that
(i) (2A)T = 2AT
(ii) (A + B)T = AT + BT
(iii) (A − B)T = AT − BT
(iv) (AB)T = BT AT
Solution:
(i) Given: A = \begin{bmatrix} 2 & -3 \\ -7 & 5 \end{bmatrix} and B = \begin{bmatrix} 1 & 0 \\ 2 & -4 \end{bmatrix}
Assume,
(2A)T = 2AT
Substitute the value of A
\left (2 \begin{bmatrix} 2 & -3 \\ -7 & 5 \end{bmatrix} \right )^T = 2\begin{bmatrix} 2 & -3 \\ -7 & 5 \end{bmatrix}^T\\ \begin{bmatrix} 4 & -6 \\ -14 & 10 \end{bmatrix}^T=2\begin{bmatrix} 2 & -7 \\ -3 & 5 \end{bmatrix}\\ \begin{bmatrix} 4 & -14 \\ -6 & 10 \end{bmatrix}=\begin{bmatrix} 4 & -14 \\ -6 & 10 \end{bmatrix}
L.H.S = R.H.S
Hence, proved.
(ii) Given: A = \begin{bmatrix} 2 & -3 \\ -7 & 5 \end{bmatrix} and B = \begin{bmatrix} 1 & 0 \\ 2 & -4 \end{bmatrix}
Assume,
(A+B)T = AT + BT
\left(\begin{bmatrix} 2 & -3 \\ -7 & 5 \end{bmatrix} +\begin{bmatrix} 1 & 0 \\ 2 & -4 \end{bmatrix} \right )^T=\begin{bmatrix} 2 & -3 \\ -7 & 5 \end{bmatrix} ^T+\begin{bmatrix} 1 & 0 \\ 2 & -4 \end{bmatrix}^T\\ \begin{bmatrix} 2+1 & -3+0 \\ -7+2 & 5-4 \end{bmatrix}=\begin{bmatrix} 2 & -7 \\ -3 & 5 \end{bmatrix}+\begin{bmatrix} 1 & 2 \\ 0 & -4 \end{bmatrix}\\ \begin{bmatrix} 3 & -3 \\ -5 & 1 \end{bmatrix}^T=\begin{bmatrix} 3 & -5 \\ -3 & 1 \end{bmatrix}\\ \begin{bmatrix} 3 & -5 \\ -3 & 1 \end{bmatrix}=\begin{bmatrix} 3 & -5 \\ -3 & 1 \end{bmatrix}
L.H.S = R.H.S
Hence, proved.
(iii) Given: A= \begin{bmatrix} 2 & -3 \\ -7 & 5 \end{bmatrix} and B= \begin{bmatrix} 1 & 0 \\ 2 & -4 \end{bmatrix}
Assume,
(A − B)T = AT − BT
\left(\begin{bmatrix} 2 & -3 \\ -7 & 5 \end{bmatrix}-\begin{bmatrix} 1 & 0 \\ 2 & -4 \end{bmatrix} \right)^T=\begin{bmatrix} 2 & -3 \\ -7 & 5 \end{bmatrix}^T-\begin{bmatrix} 1 & 0 \\ 2 & -4 \end{bmatrix}^T\\ \begin{bmatrix} 2-1 & -3-0 \\ -7-2 & 5+4 \end{bmatrix}^T=\begin{bmatrix} 2 & -7 \\ -3 & 5 \end{bmatrix}-\begin{bmatrix} 1 & 2 \\ 0 & -4 \end{bmatrix}\\ \begin{bmatrix} 1 & -3 \\ -9 & 9 \end{bmatrix}^T=\begin{bmatrix} 1 & -9 \\ -3 & 9 \end{bmatrix}\\ \begin{bmatrix} 1 & -9 \\ -3 & 9 \end{bmatrix}=\begin{bmatrix} 1 & -9 \\ -3 & 9 \end{bmatrix}
L.H.S = R.H.S
Hence, proved
(iv) Given: A = \begin{bmatrix} 2 & -3 \\ -7 & 5 \end{bmatrix} and B = \begin{bmatrix} 1 & 0 \\ 2 & -4 \end{bmatrix}
Assume,
(AB)T = BTAT
\left(\begin{bmatrix} 2 & -3 \\ -7 & 5 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 2 & -4 \end{bmatrix}\right)^T=\begin{bmatrix} 1 & 0 \\ 2 & -4 \end{bmatrix}^T\begin{bmatrix} 2 & -3 \\ -7 & 5 \end{bmatrix}^T\\ \begin{bmatrix} 2-6 & 0+12 \\ -7+10 & 0-20 \end{bmatrix}^T=\begin{bmatrix} 1 & 2 \\ 0 & -4 \end{bmatrix}\begin{bmatrix} 2 & -3 \\ -7 & 5 \end{bmatrix}\\ \begin{bmatrix} -4 & 3 \\ 12 & -20 \end{bmatrix}=\begin{bmatrix} -4 & 3 \\ 12 & -20 \end{bmatrix}
Therefore, (AB)T = BTAT
Hence, proved.
Question 2: A = \begin{bmatrix}3\\5\\2\end{bmatrix} and B = \begin{bmatrix}1&0&4\end{bmatrix} Verify that (AB)T = BTAT
Solution:
Given: A = \begin{bmatrix}3\\5\\2\end{bmatrix} and B = \begin{bmatrix}1&0&4\end{bmatrix}
Assume,
(AB)T = BTAT
\left(\begin{bmatrix}3\\5\\2\end{bmatrix}\begin{bmatrix}1&0&4\end{bmatrix}\right)^T=\begin{bmatrix}1&0&4\end{bmatrix}^T\begin{bmatrix}3\\5\\2\end{bmatrix}^T\\ \begin{bmatrix}3&0&12\\5&0&20\\2&0&8\end{bmatrix}^T=\begin{bmatrix}1\\0\\4\end{bmatrix}\begin{bmatrix}3&5&2\end{bmatrix}\\ \begin{bmatrix}3&5&2\\0&0&0\\12&20&8\end{bmatrix}=\begin{bmatrix}3&5&2\\0&0&0\\12&20&8\end{bmatrix}
L.H.S = R.H.S
Hence proved
Question 3: Let A = \begin{bmatrix}1&-1&0\\2&1&3\\1&2&1\end{bmatrix} and B = \begin{bmatrix}1&2&3\\2&1&3\\0&1&1\end{bmatrix}
Find AT, BT and verify that
(i) (A + B)T = AT + BT
(ii) (AB)T = BTAT
(iii) (2A)T = 2AT
Solution:
(i) Given: A = \begin{bmatrix}1&-1&0\\2&1&3\\1&2&1\end{bmatrix}
and B = \begin{bmatrix}1&2&3\\2&1&3\\0&1&1\end{bmatrix}
Assume
(A + B)T = AT + BT
\left(\begin{bmatrix}1&-1&0\\2&1&3\\1&2&1\end{bmatrix}+\begin{bmatrix}1&2&3\\2&1&3\\0&1&1\end{bmatrix}\right)^T=\begin{bmatrix}1&-1&0\\2&1&3\\1&2&1\end{bmatrix}+\begin{bmatrix}1&2&3\\2&1&3\\0&1&1\end{bmatrix}^T\\ \begin{bmatrix}1+1&-1+2&0+3\\2+2&1+1&3+3\\1+0&2+1&1+1\end{bmatrix}^T=\begin{bmatrix}1&2&1\\-1&1&2\\0&3&1\end{bmatrix}+\begin{bmatrix}1&2&0\\2&1&1\\3&3&1\end{bmatrix}\\ \begin{bmatrix}2&1&3\\4&2&6\\1&3&2\end{bmatrix}^T=\begin{bmatrix}1+1&2+2&1+0\\-1+2&1+1&2+1\\0+3&3+3&1+1\end{bmatrix}\\ \begin{bmatrix}2&4&1\\1&2&3\\3&6&2\end{bmatrix}=\begin{bmatrix}2&4&1\\1&2&3\\3&6&2\end{bmatrix}
L.H.S = R.H.S
Hence proved
(ii) Given: A = \begin{bmatrix}1&-1&0\\2&1&3\\1&2&1\end{bmatrix} and B = \begin{bmatrix}1&2&3\\2&1&3\\0&1&1\end{bmatrix}
Assume,
\left(\begin{bmatrix}1&-1&0\\2&1&3\\1&2&1\end{bmatrix}\begin{bmatrix}1&2&3\\2&1&3\\0&1&1\end{bmatrix}\right)^T=\begin{bmatrix}1&2&3\\2&1&3\\0&1&1\end{bmatrix}^T\begin{bmatrix}1&-1&0\\2&1&3\\1&2&1\end{bmatrix}^T\\ \begin{bmatrix}1-2+0&2-1+0&3-3+0\\2+2+0&4+1+3&6+3+3\\1+4+0&2+2+1&3+6+1\end{bmatrix}^T=\begin{bmatrix}1&2&0\\2&1&1\\3&3&1\end{bmatrix}\begin{bmatrix}1&2&1\\-1&1&2\\0&3&1\end{bmatrix}\\ \begin{bmatrix}-1&1&0\\4&8&12\\5&5&10\end{bmatrix}^T=\begin{bmatrix}1-2+0&2+2+0&1+4+0\\2-1+0&4+1+3&2+2+1\\3-3+0&6+3+3&3+6+1\end{bmatrix}\\ \begin{bmatrix}-1&4&5\\1&8&5\\0&12&10\end{bmatrix}=\begin{bmatrix}-1&4&5\\1&8&5\\0&12&10\end{bmatrix}
(AB)T = BTAT
\begin{bmatrix}-1&4&5\\1&8&5\\0&12&10\end{bmatrix}=\begin{bmatrix}-1&4&5\\1&8&5\\0&12&10\end{bmatrix}
L.H.S =R.H.S
Hence proved
(iii) Given: A = \begin{bmatrix}1&-1&0\\2&1&3\\1&2&1\end{bmatrix} and B = \begin{bmatrix}1&2&3\\2&1&3\\0&1&1\end{bmatrix}
Assume,
(2A)T = 2AT
\left(2\begin{bmatrix}1&-1&0\\2&1&3\\1&2&1\end{bmatrix}\right)^T=2\begin{bmatrix}1&-1&0\\2&1&3\\1&2&1\end{bmatrix}^T\\ \begin{bmatrix}2&-2&0\\4&2&6\\2&4&2\end{bmatrix}^T=2\begin{bmatrix}1&2&1\\-1&1&2\\0&3&1\end{bmatrix}\\ \begin{bmatrix}2&4&2\\-2&2&4\\0&6&2\end{bmatrix}=\begin{bmatrix}2&4&2\\-2&2&4\\0&6&2\end{bmatrix}
L.H.S = R.H.S
Hence proved
Question 4: if A = \begin{bmatrix}-2\\4\\5\end{bmatrix}, B = \begin{bmatrix}1&3&-6\end{bmatrix}, verify that (AB)T = BTAT
Solution:
Given: A = \begin{bmatrix}-2\\4\\5\end{bmatrix} and B = \begin{bmatrix}1&3&-6\end{bmatrix}
Assume,
(AB)T = BTAT
\left(\begin{bmatrix}-2\\4\\5\end{bmatrix}\begin{bmatrix}1&3&-6\end{bmatrix}\right)^T=\begin{bmatrix}1&3&-6\end{bmatrix}^T\begin{bmatrix}-2\\4\\5\end{bmatrix}^T\\ \begin{bmatrix}-2&-6&-12\\4&12&-24\\-5&15&-30\end{bmatrix}^T=\begin{bmatrix}1\\3\\-6\end{bmatrix}\begin{bmatrix}-2&4&5\end{bmatrix}\\ \begin{bmatrix}-2&4&5\\-6&12&15\\-12&-24&-30\end{bmatrix}=\begin{bmatrix}-2&4&5\\-6&12&15\\-12&-24&-30\end{bmatrix}
L.H.S = R.H.S
Hence proved
Question 5: If A = \begin{bmatrix}2&4&-1\\-1&0&2\end{bmatrix}and B = \begin{bmatrix}3&4\\-1&2\\2&1\end{bmatrix}, find (AB)T
Solution:
Given: A = \begin{bmatrix}2&4&-1\\-1&0&2\end{bmatrix} and B = \begin{bmatrix}3&4\\-1&2\\2&1\end{bmatrix}
Here we have to find (AB)T
\left(\begin{bmatrix}2&4&-1\\-1&0&2\end{bmatrix}\begin{bmatrix}3&4\\-1&2\\2&1\end{bmatrix}\right)^T\\ \begin{bmatrix}6-4-2&8+8-1\\-3-0+4&-4+0+2\end{bmatrix}^T\\ \begin{bmatrix}0&15\\1&-2\end{bmatrix}^T\\ \begin{bmatrix}0&1\\15&-2\end{bmatrix}
Hence,
(AB)T = \begin{bmatrix}0&1\\15&-2\end{bmatrix}
Question 6:
(i) For two matrices A and B, A=\begin{bmatrix}2&1&3\\4&1&0\end{bmatrix},\ B=\begin{bmatrix}1&-1\\0&2\\5&0\end{bmatrix}, verify that (AB)T = BTAT
Solution:
Given,
A=\begin{bmatrix}2&1&3\\4&1&0\end{bmatrix},\ B=\begin{bmatrix}1&-1\\0&2\\5&0\end{bmatrix}
(AB)T = BTAT
⇒ \left(\begin{bmatrix}2&1&3\\4&1&0\end{bmatrix}\begin{bmatrix}1&-1\\0&2\\5&0\end{bmatrix}\right)^T=A=\begin{bmatrix}1&-1&\\0&2\\5&0\end{bmatrix}^T\begin{bmatrix}2&1&3\\4&1&0\end{bmatrix}^T
⇒ \begin{bmatrix}2+0+15&-2+20\\4+0+0&-4+2+0\end{bmatrix}^T=\begin{bmatrix}1&0&5\\-1&2&0\end{bmatrix}\begin{bmatrix}2&4\\1&1\\3&0\end{bmatrix}
⇒ \begin{bmatrix}17&0\\4&-2\end{bmatrix}^T=\begin{bmatrix}2+0+15&4+0+0\\-2+2+0&-4+2+0\end{bmatrix}
⇒ \begin{bmatrix}17&4\\0&-2\end{bmatrix}=\begin{bmatrix}17&4\\0&-2\end{bmatrix}
⇒ L.H.S = R.H.S
Hence,
(AB)T = BTAT
(ii) For the matrices A and B, verify that (AB)T = BTAT, where
A=\begin{bmatrix}1&3\\2&4\end{bmatrix},\ B=\begin{bmatrix}1&4\\2&5\end{bmatrix}
Solution:
Given,
A=\begin{bmatrix}1&3\\2&4\end{bmatrix},\ B=\begin{bmatrix}1&4\\2&5\end{bmatrix}
(AB)T = BTAT
⇒ \left(\begin{bmatrix}1&3\\2&4\end{bmatrix}\begin{bmatrix}1&4\\2&5\end{bmatrix}\right)^T=\begin{bmatrix}1&4&\\2&5\end{bmatrix}^T\begin{bmatrix}1&3\\2&4\end{bmatrix}^T
⇒ \begin{bmatrix}1+6&4+15\\2+8&8+20\end{bmatrix}^T=\begin{bmatrix}1&2\\4&5\end{bmatrix}\begin{bmatrix}1&2\\3&4\end{bmatrix}
⇒ \begin{bmatrix}7&19\\10&28\end{bmatrix}^T=\begin{bmatrix}1+6&2+8\\4+15&8+20\end{bmatrix}
⇒ \begin{bmatrix}7&10\\19&28\end{bmatrix}=\begin{bmatrix}7&10\\19&28\end{bmatrix}
⇒ L.H.S = R.H.s
So,
(AB)T = BTAT
Question 7: Find A^T=\begin{bmatrix}3&4\\-1&2\\0&1\end{bmatrix}\ and\ B=\begin{bmatrix}-1&2&1\\1&2&3\end{bmatrix}, AT - BT
Solution:
Given that A^T=\begin{bmatrix}3&4\\-1&2\\0&1\end{bmatrix}\ and\ B=\begin{bmatrix}-1&2&1\\1&2&3\end{bmatrix}
We need to find AT - BT.
Given that, B=\begin{bmatrix}-1&2&1\\1&2&3\end{bmatrix}
B^T=\begin{bmatrix}-1&2&1\\1&2&3\end{bmatrix}^T=\begin{bmatrix}-1&1\\2&2\\1&3\end{bmatrix}
Let us find AT - BT
⇒ A^T-B^T=\begin{bmatrix}3&4\\-1&2\\0&1\end{bmatrix}-\begin{bmatrix}-1&1\\2&2\\1&3\end{bmatrix}
⇒ A^T-B^T=\begin{bmatrix}3+1&4-1\\-1-2&2-2\\0-1&1-3\end{bmatrix}
⇒ A^T-B^T=\begin{bmatrix}4&3\\-3&0\\-1&-2\end{bmatrix}
Question 8: If A=\begin{bmatrix}cos\alpha&sin\alpha\\-sin\alpha&cos\alpha\end{bmatrix}, then verify that A'A = 1
Solution:
A=\begin{bmatrix}cos\alpha&sin\alpha\\-sin\alpha&cos\alpha\end{bmatrix}
\therefore A'=\begin{bmatrix}cos\alpha&-sin\alpha\\sin\alpha&cos\alpha\end{bmatrix}
A'A=\begin{bmatrix}cos\alpha&-sin\alpha\\sin\alpha&cos\alpha\end{bmatrix}\begin{bmatrix}cos\alpha&sin\alpha\\-sin\alpha&cos\alpha\end{bmatrix}
⇒ \begin{bmatrix}(cos\alpha) (cos\alpha)+(-sin\alpha)(-sin\alpha)&(cos\alpha)(sin\alpha)+(-sin\alpha)(cos\alpha)\\(sin\alpha)(cos\alpha)+(cos\alpha)(-sin\alpha)&(sin\alpha)(sin\alpha)+(cos\alpha)(cos\alpha)\end{bmatrix}
⇒ \begin{bmatrix}cos^2\alpha+sin^2\alpha&sin\alpha cos\alpha-sin\alpha cos\alpha\\sin\alpha cos\alpha-sin\alpha cos\alpha&sin^2\alpha+cos^2\alpha\end{bmatrix}
⇒ \begin{bmatrix}1&0\\0&1\end{bmatrix}=I
Hence,we have verified that A'A = I
Question 9: A=\begin{bmatrix}sin\alpha&cos\alpha\\-cos\alpha&sin\alpha\end{bmatrix}, then verify that A'A = I
Solution:
A=\begin{bmatrix}sin\alpha&cos\alpha\\-cos\alpha&sin\alpha\end{bmatrix}\\ \therefore\ A'=\begin{bmatrix}sin\alpha&-cos\alpha\\cos\alpha&sin\alpha\end{bmatrix}\\ A'A=\begin{bmatrix}sin\alpha&-cos\alpha\\cos\alpha&sin\alpha\end{bmatrix}\begin{bmatrix}sin\alpha&cos\alpha\\-cos\alpha&sin\alpha\end{bmatrix}
=\begin{bmatrix}(sin\alpha)(sin\alpha)+(-cos\alpha)(-cos\alpha)&(sin\alpha)(cos\alpha)+(-cos\alpha)(sin\alpha)\\(cos\alpha)(sin\alpha)+(sin\alpha)(-cos\alpha)&(cos\alpha)(cos\alpha)+(sin\alpha)(sin\alpha)\end{bmatrix}
=\begin{bmatrix}sin^2\alpha+cos^2\alpha&sin\alpha cos\alpha-sin\alpha cos\alpha\\sin\alpha cos\alpha-sin\alpha cos\alpha&cos^2\alpha+sin^2\alpha\end{bmatrix}
=\begin{bmatrix}1&0\\0&1\end{bmatrix}=I
Hence, we have verified that A'A = I
Question 10: If li, mi, ni ; i = 1, 2, 3 denote the direction cosines of three mutually perpendicular vectors in space, prove that AAT = I,
Where A=\begin{bmatrix}l_1&m_1&n_1\\l_2&m_2&n_2\\l_3&m_3&n_3\end{bmatrix}
Solution:
Given,
li, mi, ni are direction cosines of three mutually perpendicular vectors
⇒ \left.\begin{aligned} l_1l_2+m_1m_2+n_1n_2=0\\ l_2l_3+m_2m_3+n_2n_3=0\\ l_1l_3+m_1m_3+n_1n_3=0 \end{aligned}\right\}\ \ \ \ \ \ --- (A)
And,
\left.\begin{aligned} l_1^2+m_1^2+n_1^2=1\\ l_2^2+m_2^2+n_2^2=1\\ l_3^2+m_3^2+n_3^2=1 \end{aligned}\right\}\ \ \ \ \ ---(B)
Given,
A=\begin{bmatrix}l_1&m_1&n_1\\ l_2&m_2&n_2\\ l_3&m_3&n_3\end{bmatrix}
AA^T=\begin{bmatrix}l_1&m_1&n_1\\ l_2&m_2&n_2\\ l_3&m_3&n_3\end{bmatrix}\begin{bmatrix}l_1&m_1&n_1\\ l_2&m_2&n_2\\ l_3&m_3&n_3\end{bmatrix}^T\\ =\begin{bmatrix}l_1&m_1&n_1\\ l_2&m_2&n_2\\ l_3&m_3&n_3\end{bmatrix}\begin{bmatrix}l_1&l_2&l_3\\ m_1&m_2&m_3\\ n_1&n_2&n_3\end{bmatrix}
\begin{bmatrix}l_1^2+m_1^2+n_1^2&l_1l_2+m_1m_2+n_1n_2&l_1l_3+m_1m_3+n_1n_3\\ l_1l_2+m_1m_2+n_1n_2&l_2^2+m_2^2+n_2^2&l_2l_3+m_2m_3+n_2n_3\\ l_1l_3+m_1m_3+n_1n_3&l_3l_2+m_3m_2+n_3n_2&l_3^2+m_3^2+n_3^2\end{bmatrix}
\begin{bmatrix}1&0&0\\ 0&1&0\\ 0&0&1\end{bmatrix}\ \ \ \ \ \ \ [using\ (A)\ and\ (B)]
= I
Hence,
AAT = I
Summary
Exercise 5.4 covers the following key topics:
Elementary row operations
Elementary column operations
Properties of elementary operations
Equivalence of matrices
Row-reduced echelon form
Applications of elementary operations in solving systems of linear equations
These concepts are essential for more advanced topics in linear algebra and have practical applications in fields such as computer graphics, economics, and engineering.
Explore
Basic Arithmetic
Algebra
Geometry
Trigonometry & Vector Algebra
Calculus
Probability and Statistics
Practice