Question 16. Discuss the continuity of the function
f(x)=\begin{cases}x,&0\leq x<(\frac{1}{2}) \\(\frac{1}{2}),&x=(\frac{1}{2}) \\1-x,&(\frac{1}{2})<x\leq1\end{cases} at the point x = 1/2.
Solution:
Given that,
f(x)=\begin{cases}x,&0\leq x<(\frac{1}{2}) \\(\frac{1}{2}),&x=(\frac{1}{2}) \\1-x,&(\frac{1}{2})<x\leq1\end{cases}
So, here we check the continuity of the given f(x) at x = 1/2,
Let us consider LHL,
\lim_{x\to{\frac{1}{2}}^-}f(x) =\lim_{h\to0}f(\frac{1}{2}-h)
=\lim_{h\to0}\frac{1}{2}-h=\frac{1}{2}
Now, let us consider RHL,
\lim_{x\to{\frac{1}{2}}^+}f(x) =\lim_{h\to0}f(\frac{1}{2}+h)
=\lim_{h\to0}1-(\frac{1}{2}+h)=\frac{1}{2}
f(1/2) = 1/2
Thus, LHL= RHL = f(1/2) = 1/2
Hence, the f(x) is continuous at x = 1/2.
Question 17. Discuss the continuity of f(x)=\begin{cases}2x-1,& \text{if }x<0 \\2x+1,& \text{if }x\geq0\end{cases} at the point x = 0.
Solution:
Given that,
f(x)=\begin{cases}2x-1,& \text{if }x<0 \\2x+1,& \text{if }x\geq0\end{cases}
So, here we check the continuity of the given f(x) at x = 10,
Let us consider LHL,
\lim_{x\to0^-}f(x) =\lim_{h\to0}f(0-h)
=\lim_{h\to0}2(-h)-1=-1
Now, let us consider RHL,
\lim_{x\to0^+}f(x) =\lim_{h\to0}f(0+h)
=\lim_{h\to0}2h+1=1
Thus, LHL ≠ RHL
Hence, the f(x) is discontinuous at x = 0.
Question 18. For what value of k is the function f(x)=\begin{cases}\frac{x^2-1}{x-1},& x\neq1 \\k,& x=1\end{cases} continuous at x = 1 ?
Solution:
Given that,
f(x)=\begin{cases}\frac{x^2-1}{x-1},& x\neq1 \\k,& x=1\end{cases}
Also, f(x) is continuous at x = 1
So,
LHL = RHL = f(1) ......(i)
Let us consider LHL,
\lim_{x\to1^-}f(x) =\lim_{h\to0}f(1-h)
=\lim_{h\to0}\frac{(1-h)^2-1}{(1-h)-1}
=\lim_{h\to0}\frac{h^2-2h}{-h}=2
f(1) = k
From eq(i), we get
LHL = F(1)
Therefore, k = 2
Question 19. Determine the value of the constant k so that the function
f(x)=\begin{cases}\frac{x^2-3x+2}{x-1},& \text{if }x\neq1 \\k,& \text{if }x=1\end{cases} continuous at x = 1.
Solution:
Given that,
f(x)=\begin{cases}\frac{x^2-3x+2}{x-1},& \text{if }x\neq1 \\k,& \text{if }x=1\end{cases}
Also, f(x) is continuous at x = 1
So, LHL = RHL = f(1) .....(i)
Let us consider LHL,
\lim_{x\to1^-}f(x) =\lim_{h\to0}f(1-h)
=\lim_{h\to0}\frac{(1-h)^2-3(1-h)+2}{(1-h)-1}
=\lim_{h\to0}\frac{h^2+h}{-h}
=\lim_{h\to0}-h-1=-1
f(1) = k
From eq(i), we get
LHL = F(1)
Therefore, k = -1
Question 20. For what value of k is the function f(x)=\begin{cases}\frac{sin5x}{3x},& \text{if }x\neq0 \\k,& \text{if }x=0\end{cases} continuous at x = 0 ?
Solution:
Given that,
f(x)=\begin{cases}\frac{sin5x}{3x},& \text{if }x\neq0 \\k,& \text{if }x=0\end{cases}
Also, f(x) is continuous at x = 0
So, LHL = RHL = f(0) .....(i)
Let us consider LHL,
\lim_{x\to0^-}f(x) =\lim_{h\to0}f(0-h)
=\lim_{h\to0}\frac{sin5(-h)}{3(-h)}
=\lim_{h\to0}\frac{-sin5h}{-3h}
=\lim_{h\to0}\frac{sin5h}{3h}\frac{5h}{3h}=\frac{5}{3}
f(0) = k
Thus, from eq(i), we get
k = 5/3
Therefore, k = 5/3
Question 21. Determine the value of the constant k so that the function
f(x)=\begin{cases}kx^2,& \text{if }x\leq2 \\3,& \text{if }x>2\end{cases} continuous at x = 2.
Solution:
Given that,
f(x)=\begin{cases}kx^2,& \text{if }x\leq2 \\3,& \text{if }x>2\end{cases}
Also, f(x) is continuous at x = 2
Then, f(2) = k(2)2 = 4k
\lim_{x\to2^-}f(x)=\lim_{x\to2^+}f(x)=f(2)
⇒ \lim_{x\to2^-}(kx^2)=\lim_{x\to2^+}(3)=4k
⇒ k × 22 = 3 = 4k
⇒ 4k = 3 = 4k
⇒ 4k = 3
⇒ k = 3/4
Hence, the value of k is 3/4
Question 22. Determine the value of the constant k so that the function
f(x)=\begin{cases}\frac{sin2x}{5x},& \text{if }x\neq0 \\k,& \text{if }x=0\end{cases} is continuous at x = 0.
Solution:
Given that,
f(x)=\begin{cases}\frac{sin2x}{5x},& \text{if }x\neq0 \\k,& \text{if }x=0\end{cases}
Also, f(x) is continuous at x = 0
So, LHL = RHL = f(0) ....(i)
Let us consider LHL,
\lim_{x\to0^-}f(x) =\lim_{h\to0}f(0-h)
=\lim_{h\to0}\frac{sin2(-h)}{5(-h)}
=\lim_{h\to0}\frac{-sin2h}{-5h}
=\lim_{h\to0}\frac{sin2h}{5h}×\frac{2h}{5h}=2/5
f(0) = k
From eq(i), we get
k = 2/5
Question 23. Find the values of a so that the function f(x)=\begin{cases}ax+5,& \text{if }x\leq2 \\x-1,& \text{if }x>2\end{cases} is continuous at x = 2.
Solution:
Given that,
f(x)=\begin{cases}ax+5,& \text{if }x\leq2 \\x-1,& \text{if }x>2\end{cases}
Also, f(x) is continuous at x = 2
So, LHL = RHL = f(2) .......(i)
Let us consider LHL,
\lim_{x\to2^-}f(x) =\lim_{h\to0}f(2-h)
=\lim_{h\to0}a(2-h)+5
= 2a + 5
Now, let us consider RHL,
\lim_{x\to2^+}f(x) =\lim_{h\to0}f(2+h)
=\lim_{h\to0}2+h-1=1
From eq(i), we get
2a + 5 = 1
⇒ a = -2
Question 24. Prove that the function
f(x)=\begin{cases}\frac{x}{|x|+2x^2},& \text{if }x\neq0 \\k,& \text{if }x=0\end{cases} remains discontinuous at x = 0, regardless the choice of k.
Solution:
Given that,
f(x)=\begin{cases}\frac{x}{|x|+2x^2},& \text{if }x\neq0 \\k,& \text{if }x=0\end{cases}
We have, at x = 0
Let us consider LHL,
\lim_{x\to0^-}f(x) =\lim_{h\to0}f(0-h)
=\lim_{h\to0}\frac{-h}{|-h|+2(-h)^2}
=\lim_{h\to0}\frac{-h}{h+2h^2}
=\lim_{h\to0}\frac{-1}{1+2h}=-1
f(0) = k
Now, let us consider RHL,
\lim_{x\to0^+}f(x) =\lim_{h\to0}f(0+h)
=\lim_{h\to0}\frac{h}{|h|+2h^2}
=\lim_{h\to0}\frac{1}{1+2h}=1
Since, LHL ≠ RHL,
Therefore, f(x) will remain discontinuous at x = 0, regardless the value of k.
Question 25. Find the value of k if f(x) is continuous at x = π/2, where
f(x)=\begin{cases}\frac{kcosx}{π-2x},& \text{if }x\neq(\frac{π}{2}) \\3,& \text{if }x=(\frac{π}{2})\end{cases}
Solution:
Given that,
f(x)=\begin{cases}\frac{kcosx}{π-2x},& \text{if }x\neq(\frac{π}{2}) \\3,& \text{if }x=(\frac{π}{2})\end{cases}
Also, f(x) is continuous at x = π/2
LHL = RHL
⇒ \lim_{x\to{\frac{π}{2}}^-}f(x)=\lim_{x\to{\frac{π}{2}}^+}f(x)=\lim_{h\to{\frac{π}{2}}}f(x)=f(\frac{π}{2})
⇒ \lim_{x\to{\frac{π}{2}}^-}\frac{kcosx}{π-2x}=3
⇒ k\lim_{x\to\frac{π}{2}}\frac{sin(\frac{π}{2}-x)}{2(\frac{π}{2}-x)}=3
⇒ \frac{k}{2}\lim_{x\to\frac{π}{2}}\frac{sin(\frac{π}{2}-x)}{(\frac{π}{2}-x)}=3
⇒ k/2 = 3
⇒ k = 6
Question 26. Determine the values of a, b, c for which the function
f(x)=\begin{cases}\frac{sin(a+1)x+sinx}{x},& \text{if }x<0 \\c,& \text{for }x=0\\\frac{\sqrt{x+bx^2}-√x}{bx^{3/2}},&\text{for }x>0\end{cases}
is continuous at x = 0.
Solution:
Given that,
f(x)=\begin{cases}\frac{sin(a+1)x+sinx}{x},& \text{if }x<0 \\c,& \text{for }x=0\\\frac{\sqrt{x+bx^2}-√x}{bx^{3/2}},&\text{for }x>0\end{cases}
Also, f(x) is continuous at x = 0
So, LHL = RHL = f(0) .....(i)
f(0) = 0
Let us consider LHL,
\lim_{x\to0^-}f(x) =\lim_{h\to0}f(0-h)
= \lim_{h\to0}\frac{sin(a+1)(-h)+sin(-h)}{-h}
= \lim_{h\to0}\frac{-sin(ah+h)-sinh}{-h}
= \lim_{h\to0}\frac{sin(a+1)h}{h}+\lim_{h\to0}\frac{sinh}{h}
= a + 1 + 1 = a + 2
Now, let us consider RHL,
\lim_{x\to0^+}f(x) =\lim_{h\to0}f(0+h)
= \lim_{h\to0}\frac{\sqrt{h+bh^2}-√h}{bh^{3/2}}
= \lim_{h\to0}\frac{\sqrt{h+bh^2}-√h}{bh^{3/2}}\frac{\sqrt{h+bh^2}+√h}{\sqrt{h+bh^2}+√h}
= \lim_{h\to0}\frac{h+bh^2-h}{bh^{3/2}(\sqrt{h+bh^2}+√h)}
= \lim_{h\to0}\frac{bh^2}{bh^2(\sqrt{1+bh}+1)}=1/2
From eq(i), we get
a + 2 = 1/2 ⇒ a = -3/2
c = 1/2 and b ∈ R -{0}
Hence, a = -3/2, b ∈ R -{0}, c =1/2
Question 27. If f(x)=\begin{cases}\frac{1-coskx}{xsinx},& \text{if }x\neq0 \\(\frac{1}{2}),& \text{if }x=0\end{cases} is continuous at x = 0, find k.
Solution:
Given that,
f(x)=\begin{cases}\frac{1-coskx}{xsinx},& \text{if }x\neq0 \\(\frac{1}{2}),& \text{if }x=0\end{cases}
Also, f(x) is continuous at x = 0
So, LHL = RHL = f(0) .......(i)
f(0) = 1/2
Let us consider LHL,
\lim_{x\to0^-}f(x) =\lim_{h\to0}f(0-h)
=\lim_{h\to0}\frac{1-cosk(-h)}{-hsin(-h)}
=\lim_{h\to0}\frac{1-coskh}{hsinh}
=\lim_{h\to0}\frac{2sin^2(\frac{kh}{2})}{h.2sin(\frac{h}{2}).cos(\frac{h}{2})}
=\lim_{h\to0}(\frac{sin(\frac{kh}{2})}{\frac{kh}{2}})^2\frac{\frac{k^2h^2}{4}}{\frac{sin(\frac{h}{2})}{\frac{h}{2}}(\frac{h}{2})}.(\frac{1}{h})
=\lim_{h\to0}(\frac{sin(\frac{kh}{2})}{\frac{kh}{2}})^2\frac{\frac{k^2}{4}}{\frac{sin(\frac{h}{2})}{\frac{h}{2}}(\frac{1}{2})}
= k2/2
Using eq(i) we get,
k2/2 = 1/2 ⇒ k = ±1
Question 28. If f(x)=\begin{cases}\frac{x-4}{|x-4|},& \text{if }x<4 \\a+b,& \text{if }x=4\\\frac{x-4}{|x-4|}+b& \text{if }x>4\end{cases} continuous at x = 4, find a, b.
Solution:
Given that,
f(x)=\begin{cases}\frac{x-4}{|x-4|},& \text{if }x<4 \\a+b,& \text{if }x=4\\\frac{x-4}{|x-4|}+b& \text{if }x>4\end{cases}
Also, f(x) is continuous at x = 4
So, LHL = RHL = f(4) ......(i)
f(4) = a + b .....(ii)
Let us consider LHL,
\lim_{x\to4^-}f(x) =\lim_{h\to0}f(4-h)
=\lim_{h\to0}\frac{(4-h)-4}{|(4-h)-4|}+a
=\lim_{h\to0}\frac{-h}{h}+a
= a - 1 ......(iii)
Now, let us consider RHL,
\lim_{x\to4^+}f(x) =\lim_{h\to0}f(4+h)
=\lim_{h\to0}\frac{(4+h)-4}{|(4+h)-4|}+b
=\lim_{h\to0}\frac{h}{h}+b
= b + 1 ......(iv)
From eq(i), we get
a - 1 = b + 1 ⇒ a - b = 2 .....(v)
From eq(ii) and eq(iii), we get
a + b = a - 1 ⇒ a - b = -1
From eq(ii) and (iv), we get
a + b = b + 1 ⇒ a = 1
Thus, a = 1 and b = -1
Question 29. For what value of k is the function
f(x)=\begin{cases}\frac{sin2x}{x},& \text{if }x\neq0 \\k,& \text{if }x=0\end{cases} continuous at x = 0 ?
Solution:
Given that,
f(x)=\begin{cases}\frac{sin2x}{x},& \text{if }x\neq0 \\k,& \text{if }x=0\end{cases}
Also, f(x) is continuous at x = 0
So, LHL = RHL = f(0) .....(i)
f(0) = k
Let us consider LHL,
\lim_{x\to0^-}f(x) =\lim_{h\to0}f(0-h)
=\lim_{h\to0}\frac{sin2(0-h)}{-h}
=\lim_{h\to0}\frac{-sin2h}{-h}=2
Using eq(i), we get
k = 2
Question 30. Let f(x) = \frac{log(1+\frac{x}{a})-log(1-\frac{x}{b})}{x} , x ≠ 0. Find the value of f at x = 0 so that f becomes continuous at x = 0.
Solution:
Given that,
f(x) = \frac{log(1+\frac{x}{a})-log(1-\frac{x}{b})}{x}
Also, f(x) is continuous at x = 0
So, LHL=RHL=f(0) ....(i)
Let us consider LHL,
\lim_{x\to0^-}f(x) =\lim_{h\to0}f(0-h)
=\lim_{h\to0}\frac{log(1-\frac{h}{a})-log(1+\frac{h}{b})}{-h}
=\lim_{h\to0}\frac{log(1+(\frac{-h}{a}))}{(\frac{-h}{a})a}+\frac{log(1+\frac{h}{b})}{h}
= 1/a + 1/b = (a + b)/ab
From eq(i), we get
f(0) = (a + b)/ab
Summary
This set likely delves deeper into:
- Continuity of composite functions
- One-sided continuity
- Continuity on closed intervals
- Application of continuity in solving equations
- Continuity of trigonometric, exponential, and logarithmic functions
Explore
Basic Arithmetic
Algebra
Geometry
Trigonometry & Vector Algebra
Calculus
Probability and Statistics
Practice