Methods to Find Inverse of a Matrix
Last Updated :
23 Jul, 2025
Methods to find the inverse of a matrix involve the inverse of a matrix formula and by elementary operations. The inverse of matrix A is represented as A-1 which when multiplied by matrix A gives an identity matrix.
In this article, we will explore different methods to find the inverse of a matrix in detail along with the inverse of matrix definition and inverse of matrix properties.
What is Inverse of a Matrix?
Inverse of a Matrix is defined as the matrix when multiplied by the original matrix gives the identity matrix. If A is a matrix, then the inverse of matrix A is represented as A-1. The inverse of a matrix can only be determined for a square matrix and the determinant is not equal to zero (i.e., non-singular matrix).

Inverse of a Matrix Definition
The matrix results in identify matrix when multiplied by the given matrix A then the matrix is called as Inverse matrix of A. It is denoted as A-1.
AA-1 = A-1A = I
where,
Properties of Inverse of Matrix
Some properties of the Inverse of the Matrix are given below.
- (A-1)-1 = A
- (AT)-1 = (A-1)T
- (AB)-1 = B-1 A-1
- (kA)-1 = k-1 A-1 = (1/k)A-1
Methods to Find Inverse of a Matrix
The different methods to find the inverse of a matrix are as follows.
The inverse of matrix formula is obtained by dividing adjoint of matrix by determinant of matrix. The adjoint of a matrix is the transpose of the cofactor matrix. The below formula represents the inverse of a matrix formula.
A-1 = adj(A) / |A|
where,
The below steps are used to find inverse of matrix from the inverse matrix formula.
- Step 1: First, find the determinant of the matrix, if determinant is zero then, inverse of matrix does not exists and if the determinant is non-zero then follow further steps.
- Step 2: Find the adjoint matrix of the given matrix.
- Step 3: Then, divide the adjoint matrix by determinant of the matrix.
The below steps are followed to find the inverse of a matrix using elementary transformations.
- Step 1: First, write the matrix as A = IA where I is identity matrix of same order as A.
- Step 2: Then perform row elementary operation or column elementary operation until we get identity matrix in LHS.
- Step 3: When identity matrix I is achieved by performing the row or column operation then we get I = BA
- Step 4: Then, B represents the inverse of matrix A.
Inverse of 2 × 2 Matrix
Inverse of 2 × 2 matrix A = \begin {bmatrix}
a & b \\
c & d
\end{bmatrix} can be directly obtained by below formula.
A-1 = \bold{\frac{1}{ad - bc}\begin{bmatrix}
d & -b \\
-c & a
\end{bmatrix}}
Examples of Methods to Find Inverse of a Matrix
Example 1: Find the inverse of the matrix P = \begin {bmatrix}
2 & 3 \\
5 & 1
\end{bmatrix} by Direct Method.
Solution:
We can find the inverse of matrix P by following formula
P-1 = \bold{\frac{1}{ad - bc}\begin{bmatrix}
d & -b \\
-c & a
\end{bmatrix}}
P-1 = \frac{1}{(2\times1 )- (3\times 5)}\begin{bmatrix}
1 & -3 \\
-5 & 2
\end{bmatrix}
P-1 = \frac{1}{2- 15}\begin{bmatrix}
1 & -3 \\
-5 & 2
\end{bmatrix}
P-1 = \frac{1}{- 13}\begin{bmatrix}
1 & -3 \\
-5 & 2
\end{bmatrix}
Example 2: Find the inverse of matrix Q = \begin {bmatrix}
1 & 0 & 4 \\
6& 1 & 0\\
5&2&3
\end{bmatrix} using inverse matrix formula.
Solution:
We can find the inverse of matrix Q by following formula.
Q-1 = adj(Q) / |Q|
First, we find |Q|.
|Q| = \begin {vmatrix}
1 & 0 & 4 \\
6& 1 & 0\\
5&2&3
\end{vmatrix}
|Q| = 1 \begin {vmatrix}
1 & 0\\
2&3
\end{vmatrix} - 0 \begin {vmatrix}
6 & 0\\
5&3
\end{vmatrix} + 4 \begin {vmatrix}
6& 1 \\
5&2
\end{vmatrix}
|Q| = 1[3 - 0] - 0 + 4[12 - 5]
|Q| = 1(3) + 4(7)
|Q| = 3 + 28
|Q| = 31
Now we will find adj(Q)
To find adj(Q) we find the cofactor matrix of Q as
adj Q = Transpose of cofactor matrix of Q
Cij = (-1)i + j Mij
where, Mij is minor.
Cofactor(Q) = \begin {bmatrix}(-1)^{1+1}\begin {vmatrix}
1 & 0\\ 2&3\\
\end{vmatrix}
(-1)^{1+2}\begin {vmatrix}
6 & 0\\ 5&3\\
\end{vmatrix}
(-1)^{1+3}\begin {vmatrix}
1 & 0\\ 2&3\\
\end{vmatrix} \\ \\
(-1)^{2+1}\begin {vmatrix}
0 & 4\\ 2&3\\
\end{vmatrix}
(-1)^{2+2}\begin {vmatrix}
1 & 4\\ 5&3\\
\end{vmatrix}
(-1)^{2+3}\begin {vmatrix}
1 & 0\\ 5&2\\
\end{vmatrix} \\ \\
(-1)^{3+1}\begin {vmatrix}
0 & 4\\ 1&0\\
\end{vmatrix}
(-1)^{3+2}\begin {vmatrix}
1 & 4\\ 6&0\\
\end{vmatrix}
(-1)^{3+3}\begin {vmatrix}
1 & 0\\ 6&1\\
\end{vmatrix} \\ \\
\end {bmatrix}
On solving above matrix we get
Cofactor of Q = \begin {bmatrix}
3 & -18 & 7 \\
8& -17 & -2\\
-4&24&1
\end{bmatrix}
adj(Q) = [Cofactor(Q)] T
adj(Q) = \begin {bmatrix}
3 & -18 & 7 \\
8& -17 & -2\\
-4&24&1
\end{bmatrix}^T
adj(Q) = \begin {bmatrix}
3 & 8 & -4 \\
-1 8& -17 & 24\\
7&-2&1
\end{bmatrix}
So, the inverse of matrix Q is given by
Q-1 = (1 / 31) \begin {bmatrix}
3 & 8 & -4 \\
-1 8& -17 & 24\\
7&-2&1
\end{bmatrix}
Example 3: Find the inverse of matrix V = \begin {bmatrix}
6 & 2 & 3 \\
0 & 1 & 4\\
5 &0 & 2
\end{bmatrix} by elementary transformations.
Solution:
To find the inverse of the matrix V = \begin {bmatrix}
6 & 2 & 3 \\
0 & 1 & 4\\
5&0 & 2
\end{bmatrix} we will use row operation.
V = IV
\begin {bmatrix}
6 & 2 & 3 \\
0 & 1 & 4\\
5&0 & 2
\end{bmatrix} = \begin {bmatrix}
1 & 0 & 0 \\
0 & 1 & 0\\
0&0 & 1
\end{bmatrix} \begin {bmatrix}
6 & 2 & 3 \\
0 & 1 & 4\\
5&0 & 2
\end{bmatrix}
R1 ← R1 - R3
\begin {bmatrix}
1 & 2 & 1 \\
0 & 1 & 4\\
5&0 & 2
\end{bmatrix} = \begin {bmatrix}
1 & 0 & -1 \\
0 & 1 & 0\\
0&0 & 1
\end{bmatrix} V
R3 ← R3 - 5R1
\begin {bmatrix}
1 & 2 & 1 \\
0 & 1 & 4\\
4&-10 &-3
\end{bmatrix} = \begin {bmatrix}
1 & 0 & -1 \\
0 & 1 & 0\\
-5&0 & 6
\end{bmatrix} V
R1← R1 - 2R2
\begin {bmatrix}
1 & 0 & -7 \\
0 & 1 & 4\\
0&-10 & -3
\end{bmatrix} = \begin {bmatrix}
1 & -2 & -1 \\
0 & 1 & 0\\
-5&0 & 6
\end{bmatrix} V
R3 ← R3 + 10R1
\begin {bmatrix}
1 & 0 & -7 \\
0 & 1 & 4\\
0&0 & 37
\end{bmatrix} = \begin {bmatrix}
1 & -2 & -1 \\
0 & 1 & 0\\
-5&10 & 6
\end{bmatrix} V
R3 ← R3/37
\begin {bmatrix}
1 & 0 & -7 \\
0 & 1 & 4\\
0&0 & 1
\end{bmatrix} = \begin {bmatrix}
1 & -2 & -1 \\
0 & 1 & 0\\
-5/37&10/37 & 6/37
\end{bmatrix} V
R1 ← R1 + 7R3
\begin {bmatrix}
1 & 0 & 0 \\
0 & 1 & 4\\
0&0 & 1
\end{bmatrix} = \begin {bmatrix}
2/37 & -4/37 & 5/37 \\
0 & 1 & 0\\
-5/37&10/37 & 6/37
\end{bmatrix} V
R2 ← R2 - 4R3
\begin {bmatrix}
1 & 0 & 0 \\
0 & 1 & 0\\
0&0 & 1
\end{bmatrix} = \begin {bmatrix}
2/37 & -4/37 & 5/37 \\
9/37 & -3/37 & -24/37\\
-5/37&10/37 & 6/37
\end{bmatrix} V
Since, the above expression is of form I = BV
Inverse of matrix V = \begin {bmatrix}
2/37 & -4/37 & 5/37 \\
9/37 & -3/37 & -24/37\\
-5/37&10/37 & 6/37
\end{bmatrix}
Practice Problems on Methods to Find Inverse of a Matrix
P1: Find the inverse of the matrix P = \begin {bmatrix}
12 & 8 \\
20 & 15
\end{bmatrix} by Direct Method.
P2: Find the inverse of matrix X = \begin {bmatrix}
2 & 10 \\
15 & 5
\end{bmatrix} by elementary transformations.
P3: Find the inverse of matrix B = \begin {bmatrix}
3 & 1 & -1 \\
2& -2 & 0\\
1&2&-1
\end{bmatrix} by inverse matrix formula.
P4: Find the inverse of matrix D = \begin {bmatrix}
2 & 3 & 1 \\
1 & 1 & 2\\
2&3&4
\end{bmatrix} by elementary transformations.
Explore
Maths
4 min read
Basic Arithmetic
Algebra
Geometry
Trigonometry & Vector Algebra
Calculus
Probability and Statistics
Practice