Maximum sum in an array such that every element has exactly one adjacent element to it
Last Updated :
10 Aug, 2023
Given an array arr[] of N integers, you can select some indexes such that every selected index has exactly one other selected index adjacent to it and the sum of elements at the chosen indexes should be maximum.
In other words, the task is to select elements from an array such that a single element alone is not selected and elements at three consecutive indices are not selected and the sum of selected elements should be maximum.
The task is to print the maximized sum.
Examples:
Input: arr[] = {1, 2, 3, 1, 4}
Output: 8
arr[0] + arr[1] + arr[3] + arr[4] = 1 + 2 + 1 + 4 = 8
Input: arr[] = {1, 1, 1, 1}
Output: 2
Approach: Dynamic programming can be used to solve this problem. This problem can be translated to selecting pairs of adjacent integers such that no two pairs are adjacent or have an element in common
i.e. if (arr[i], arr[i + 1]) is a pair we selected then neither (arr[i + 2], arr[i + 3]) nor (arr[i + 1], arr[i + 2]) can be selected.
Let's decide the states of the dp according to the above statement.
For every index i, we will either select indexes i and i + 1 i.e. make a pair or not make it. In case, we make a pair, we won't be able to select the index i + 2 as it will make 2 elements adjacent to i + 1. So, we will have to solve for i + 3 next. If we don't make a pair, we will simply solve for i + 1.
So the recurrence relation will be.
dp[i] = max(arr[i] + arr[i + 1] + dp[i + 3], dp[i + 1])
There are N states in total and each state takes O(1) time to solve. Thus, the time complexity will be O(N).
Below is the implementation of the above approach:
C++
// C++ implementation of the approach
#include <bits/stdc++.h>
#define arrSize 51
using namespace std;
// To store the states of dp
int dp[arrSize];
bool v[arrSize];
// Function to return the maximized sum
int sumMax(int i, int arr[], int n)
{
// Base case
if (i >= n - 1)
return 0;
// Checks if a state is
// already solved
if (v[i])
return dp[i];
v[i] = true;
// Recurrence relation
dp[i] = max(arr[i] + arr[i + 1]
+ sumMax(i + 3, arr, n),
sumMax(i + 1, arr, n));
// Return the result
return dp[i];
}
// Driver code
int main()
{
int arr[] = { 1, 1, 1, 1 };
int n = sizeof(arr) / sizeof(int);
cout << sumMax(0, arr, n);
return 0;
}
Java
// Java implementation of the approach
import java.io.*;
class GFG
{
static int arrSize = 51;
// To store the states of dp
static int dp[] = new int[arrSize];
static boolean v[] = new boolean[arrSize];
// Function to return the maximized sum
static int sumMax(int i, int arr[], int n)
{
// Base case
if (i >= n - 1)
return 0;
// Checks if a state is
// already solved
if (v[i])
return dp[i];
v[i] = true;
// Recurrence relation
dp[i] = Math.max(arr[i] + arr[i + 1]
+ sumMax(i + 3, arr, n),
sumMax(i + 1, arr, n));
// Return the result
return dp[i];
}
// Driver code
public static void main (String[] args)
{
int arr[] = { 1, 1, 1, 1 };
int n = arr.length;
System.out.println(sumMax(0, arr, n));
}
}
// This code is contributed by anuj_67..
Python3
# Python 3 implementation of the approach
arrSize = 51
# To store the states of dp
dp = [0 for i in range(arrSize)]
v = [False for i in range(arrSize)]
# Function to return the maximized sum
def sumMax(i,arr,n):
# Base case
if (i >= n - 1):
return 0
# Checks if a state is
# already solved
if (v[i]):
return dp[i]
v[i] = True
# Recurrence relation
dp[i] = max(arr[i] + arr[i + 1] + sumMax(i + 3, arr, n),
sumMax(i + 1, arr, n))
# Return the result
return dp[i]
# Driver code
if __name__ == '__main__':
arr = [1, 1, 1, 1]
n = len(arr)
print(sumMax(0, arr, n))
# This code is contributed by
# Surendra_Gangwar
C#
// C# implementation of the approach
using System;
class GFG
{
static int arrSize = 51;
// To store the states of dp
static int []dp = new int[arrSize];
static bool []v = new bool[arrSize];
// Function to return the maximized sum
static int sumMax(int i, int []arr, int n)
{
// Base case
if (i >= n - 1)
return 0;
// Checks if a state is
// already solved
if (v[i])
return dp[i];
v[i] = true;
// Recurrence relation
dp[i] = Math.Max(arr[i] + arr[i + 1]
+ sumMax(i + 3, arr, n),
sumMax(i + 1, arr, n));
// Return the result
return dp[i];
}
// Driver code
public static void Main ()
{
int []arr = { 1, 1, 1, 1 };
int n = arr.Length;
Console.WriteLine(sumMax(0, arr, n));
}
}
// This code is contributed by anuj_67..
JavaScript
<script>
// Javascript implementation of the approach
var arrSize = 51;
// To store the states of dp
var dp = Array(arrSize);
var v = Array(arrSize);
// Function to return the maximized sum
function sumMax(i, arr, n)
{
// Base case
if (i >= n - 1)
return 0;
// Checks if a state is
// already solved
if (v[i])
return dp[i];
v[i] = true;
// Recurrence relation
dp[i] = Math.max(arr[i] + arr[i + 1]
+ sumMax(i + 3, arr, n),
sumMax(i + 1, arr, n));
// Return the result
return dp[i];
}
// Driver code
var arr = [1, 1, 1, 1];
var n = arr.length;
document.write( sumMax(0, arr, n));
</script>
Time Complexity: O(N), where N is the given size of the array.
Auxiliary Space: O(51), no extra space is required, so it is a constant.
Efficient approach : Using DP Tabulation method ( Iterative approach )
The approach to solve this problem is same but DP tabulation(bottom-up) method is better then Dp + memoization(top-down) because memoization method needs extra stack space of recursion calls.
Steps to solve this problem :
- Create a DP to store the solution of the subproblems.
- Initialize the DP with base cases
- Now Iterate over subproblems to get the value of current problem form previous computation of subproblems stored in DP
- Return the final solution stored in dp[0].
Implementation :
C++
// C++ implementation of the approach
#include <bits/stdc++.h>
#define arrSize 51
using namespace std;
// To store the states of dp
int dp[arrSize];
// Function to return the maximized sum
int sumMax(int arr[], int n) {
// Initializing the base cases
dp[n-1] = dp[n] = dp[n+1] = 0;
// Calculating the dp table
for(int i=n-2; i>=0; i--) {
dp[i] = max(arr[i] + arr[i+1] + dp[i+3], dp[i+1]);
}
// Return the result
return dp[0];
}
// Driver Code
int main()
{
int arr[] = {1,1,1,1};
int n = sizeof(arr) / sizeof(int);
// function call
cout << sumMax(arr, n);
return 0;
}
Java
import java.util.Arrays;
public class Main {
// To store the states of dp
private static final int arrSize = 51;
private static int[] dp = new int[arrSize];
// Function to return the maximized sum
private static int sumMax(int[] arr, int n) {
// Initializing the base cases
dp[n - 1] = dp[n] = dp[n + 1] = 0;
// Calculating the dp table
for (int i = n - 2; i >= 0; i--) {
dp[i] = Math.max(arr[i] + arr[i + 1] + dp[i + 3], dp[i + 1]);
}
// Return the result
return dp[0];
}
// Driver Code
public static void main(String[] args) {
int[] arr = {1, 1, 1, 1};
int n = arr.length;
// function call
System.out.println(sumMax(arr, n));
}
}
Python
# Python implementation of the approach
import sys
sys.setrecursionlimit(10**7)
# To store the states of dp
dp = [0] * 51
# Function to return the maximized sum
def sumMax(arr, n):
# Initializing the base cases
dp[n-1] = dp[n] = dp[n+1] = 0
# Calculating the dp table
for i in range(n-2, -1, -1):
dp[i] = max(arr[i] + arr[i+1] + dp[i+3], dp[i+1])
# Return the result
return dp[0]
# Driver Code
if __name__ == '__main__':
arr = [1,1,1,1]
n = len(arr)
# function call
print(sumMax(arr, n))
C#
using System;
public class Program
{
// To store the states of dp
const int arrSize = 51;
static int[] dp = new int[arrSize];
// Function to return the maximized sum
static int sumMax(int[] arr, int n)
{
// Initializing the base cases
dp[n - 1] = dp[n] = dp[n + 1] = 0;
// Calculating the dp table
for (int i = n - 2; i >= 0; i--) {
dp[i] = Math.Max(
arr[i] + arr[i + 1] + dp[i + 3], dp[i + 1]);
}
// Return the result
return dp[0];
}
public static void Main()
{
int[] arr = { 1, 1, 1, 1 };
int n = arr.Length;
// function call
Console.WriteLine(sumMax(arr, n));
}
}
// This code is contributed by user_dtewbxkn77n
JavaScript
function sumMax(arr, n) {
// Initializing the base cases
const dp = Array(n + 2).fill(0);
// Calculating the dp table
for (let i = n - 2; i >= 0; i--) {
dp[i] = Math.max(arr[i] + arr[i + 1] + dp[i + 3], dp[i + 1]);
}
// Return the result
return dp[0];
}
// Driver Code
const arr = [1, 1, 1, 1];
const n = arr.length;
// Function call
console.log(sumMax(arr, n));
Output:
2
Time Complexity: O(N), where N is the given size of the array.
Auxiliary Space: O(51), no extra space is required, so it is a constant.
Similar Reads
Minimize Array sum by replacing elements such that Relation among adjacent elements in maintained Given an array arr[] of size N, the task is to minimize the array sum after replacing array elements with positive integers in a way such the relation among the adjacent elements (pattern of the array)is maintained. Note: If arr[i] = arr[i+1] then in the new array they both can be the same or one ca
7 min read
Modify Array such that no element is smaller/greater than half/double of its adjacent elements Given an array, arr[] of size N. Find the minimum number of elements we need to insert between array elements such that the maximum element from two adjacent elements is not more than twice bigger than the minimum element i.e., max(arr[i], arr[i+1]) ? 2 * min(arr[i], arr[i+1]) where 0 ? i < N - 1
7 min read
Maximum difference between a pair of adjacent elements by excluding every element once Given an array arr[] consisting of positive integers, the task is to find the maximum difference between any two adjacent elements after excluding each element from the array (except the first and last elements).Examples:Input: arr[] = [1, 3, 4, 7, 8]Output: [3, 4, 4]Explanation:Excluding i = 1: Rem
11 min read
Generate an array of maximum sum such that each element exceeds all elements present either on its left or right Given an array A[] consisting of N positive integers, the task is to construct an array B[] of size N having maximum possible sum of array elements satisfying the following criteria for every index i: The array element B[i] must be less than or equal to A[i].For every index i, B[i] must be greater t
10 min read
Rearrange the Array to maximize the elements which is smaller than both its adjacent elements Given an array arr[] consisting of N distinct integers, the task is to rearrange the array elements such that the count of elements that are smaller than their adjacent elements is maximum. Note: The elements left of index 0 and right of index N-1 are considered as -INF. Examples: Input: arr[] = {1,
7 min read