Minimum Possible value of |ai + aj - k| for given array and k.
Last Updated :
19 Sep, 2023
You are given an array of n integer and an integer K. Find the number of total unordered pairs {i, j} such that absolute value of (ai + aj - K), i.e., |ai + aj - k| is minimal possible, where i != j.
Examples:
Input: arr[] = {0, 4, 6, 2, 4}, K = 7
Output: Minimal Value = 1, Total Pairs = 5
Explanation: Pairs resulting minimal value are : {a1, a3}, {a2, a4}, {a2, a5}, {a3, a4}, {a4, a5}
Input: arr[] = {4, 6, 2, 4} , K = 9
Output: Minimal Value = 1, Total Pairs = 4
Explanation: Pairs resulting minimal value are : {a1, a2}, {a1, a4}, {a2, a3}, {a2, a4}
A simple solution is iterate over all possible pairs and for each pair we will check whether the value of (ai + aj - K) is smaller than our current smallest value of not. So as per result of above condition we have total of three cases :
- abs( ai + aj - K) > smallest : do nothing as this pair will not count in minimal possible value.
- abs(ai + aj - K) = smallest : increment the count of pair resulting minimal possible value.
- abs( ai + aj - K) < smallest : update the smallest value and set count to 1.
Below is the implementation of the above approach:
C++
// CPP program to find number of pairs and minimal
// possible value
#include <bits/stdc++.h>
using namespace std;
// function for finding pairs and min value
void pairs(int arr[], int n, int k)
{
// initialize smallest and count
int smallest = INT_MAX;
int count = 0;
// iterate over all pairs
for (int i = 0; i < n; i++)
for (int j = i + 1; j < n; j++) {
// is abs value is smaller than smallest
// update smallest and reset count to 1
if (abs(arr[i] + arr[j] - k) < smallest) {
smallest = abs(arr[i] + arr[j] - k);
count = 1;
}
// if abs value is equal to smallest
// increment count value
else if (abs(arr[i] + arr[j] - k) == smallest)
count++;
}
// print result
cout << "Minimal Value = " << smallest << "\n";
cout << "Total Pairs = " << count << "\n";
}
// driver program
int main()
{
int arr[] = { 3, 5, 7, 5, 1, 9, 9 };
int k = 12;
int n = sizeof(arr) / sizeof(arr[0]);
pairs(arr, n, k);
return 0;
}
Java
// Java program to find number of pairs
// and minimal possible value
import java.util.*;
class GFG {
// function for finding pairs and min value
static void pairs(int arr[], int n, int k)
{
// initialize smallest and count
int smallest = Integer.MAX_VALUE;
int count = 0;
// iterate over all pairs
for (int i = 0; i < n; i++)
for (int j = i + 1; j < n; j++) {
// is abs value is smaller than
// smallest update smallest and
// reset count to 1
if (Math.abs(arr[i] + arr[j] - k)
< smallest) {
smallest
= Math.abs(arr[i] + arr[j] - k);
count = 1;
}
// if abs value is equal to smallest
// increment count value
else if (Math.abs(arr[i] + arr[j] - k)
== smallest)
count++;
}
// print result
System.out.println("Minimal Value = " + smallest);
System.out.println("Total Pairs = " + count);
}
/* Driver program to test above function */
public static void main(String[] args)
{
int arr[] = { 3, 5, 7, 5, 1, 9, 9 };
int k = 12;
int n = arr.length;
pairs(arr, n, k);
}
}
// This code is contributed by Arnav Kr. Mandal.
Python3
# Python3 program to find number of pairs
# and minimal possible value
# function for finding pairs and min value
def pairs(arr, n, k):
# initialize smallest and count
smallest = 999999999999
count = 0
# iterate over all pairs
for i in range(n):
for j in range(i + 1, n):
# is abs value is smaller than smallest
# update smallest and reset count to 1
if abs(arr[i] + arr[j] - k) < smallest:
smallest = abs(arr[i] + arr[j] - k)
count = 1
# if abs value is equal to smallest
# increment count value
elif abs(arr[i] + arr[j] - k) == smallest:
count += 1
# print result
print("Minimal Value = ", smallest)
print("Total Pairs = ", count)
# Driver Code
if __name__ == '__main__':
arr = [3, 5, 7, 5, 1, 9, 9]
k = 12
n = len(arr)
pairs(arr, n, k)
# This code is contributed by PranchalK
C#
// C# program to find number
// of pairs and minimal
// possible value
using System;
class GFG {
// function for finding
// pairs and min value
static void pairs(int[] arr, int n, int k)
{
// initialize
// smallest and count
int smallest = 0;
int count = 0;
// iterate over all pairs
for (int i = 0; i < n; i++)
for (int j = i + 1; j < n; j++) {
// is abs value is smaller
// than smallest update
// smallest and reset
// count to 1
if (Math.Abs(arr[i] + arr[j] - k)
< smallest) {
smallest
= Math.Abs(arr[i] + arr[j] - k);
count = 1;
}
// if abs value is equal
// to smallest increment
// count value
else if (Math.Abs(arr[i] + arr[j] - k)
== smallest)
count++;
}
// print result
Console.WriteLine("Minimal Value = " + smallest);
Console.WriteLine("Total Pairs = " + count);
}
// Driver Code
public static void Main()
{
int[] arr = { 3, 5, 7, 5, 1, 9, 9 };
int k = 12;
int n = arr.Length;
pairs(arr, n, k);
}
}
// This code is contributed
// by anuj_67.
PHP
<?php
// PHP program to find number of
// pairs and minimal possible value
// function for finding pairs
// and min value
function pairs($arr, $n, $k)
{
// initialize smallest and count
$smallest = PHP_INT_MAX;
$count = 0;
// iterate over all pairs
for ($i = 0; $i < $n; $i++)
for($j = $i + 1; $j < $n; $j++)
{
// is abs value is smaller than smallest
// update smallest and reset count to 1
if ( abs($arr[$i] + $arr[$j] - $k) < $smallest )
{
$smallest = abs($arr[$i] + $arr[$j] - $k);
$count = 1;
}
// if abs value is equal to smallest
// increment count value
else if (abs($arr[$i] +
$arr[$j] - $k) == $smallest)
$count++;
}
// print result
echo "Minimal Value = " , $smallest , "\n";
echo "Total Pairs = ", $count , "\n";
}
// Driver Code
$arr = array (3, 5, 7, 5, 1, 9, 9);
$k = 12;
$n = sizeof($arr);
pairs($arr, $n, $k);
// This code is contributed by aj_36
?>
JavaScript
<script>
// Javascript program to find number of pairs and minimal
// possible value
// function for finding pairs and min value
function pairs(arr, n, k)
{
// initialize smallest and count
var smallest = 1000000000;
var count=0;
// iterate over all pairs
for (var i=0; i<n; i++)
for(var j=i+1; j<n; j++)
{
// is Math.abs value is smaller than smallest
// update smallest and reset count to 1
if ( Math.abs(arr[i] + arr[j] - k) < smallest )
{
smallest = Math.abs(arr[i] + arr[j] - k);
count = 1;
}
// if Math.abs value is equal to smallest
// increment count value
else if (Math.abs(arr[i] + arr[j] - k) == smallest)
count++;
}
// print result
document.write( "Minimal Value = " + smallest + "<br>");
document.write( "Total Pairs = " + count + "<br>");
}
// driver program
var arr = [3, 5, 7, 5, 1, 9, 9];
var k = 12;
var n = arr.length;
pairs(arr, n, k);
</script>
OutputMinimal Value = 0
Total Pairs = 4
Time Complexity: O(n2) where n is the number of elements in the array.
Auxiliary Space : O(1)
An efficient solution is to use a self balancing binary search tree (which is implemented in set in C++ and TreeSet in Java). We can find closest element in O(log n) time in map.
C++
// C++ program to find number of pairs
// and minimal possible value
#include <bits/stdc++.h>
using namespace std;
// function for finding pairs and min value
void pairs(int arr[], int n, int k)
{
// initialize smallest and count
int smallest = INT_MAX, count = 0;
set<int> s;
// iterate over all pairs
s.insert(arr[0]);
for (int i = 1; i < n; i++) {
// Find the closest elements to k - arr[i]
int lower
= *lower_bound(s.begin(), s.end(), k - arr[i]);
int upper
= *upper_bound(s.begin(), s.end(), k - arr[i]);
// Find absolute value of the pairs formed
// with closest greater and smaller elements.
int curr_min = min(abs(lower + arr[i] - k),
abs(upper + arr[i] - k));
// is abs value is smaller than smallest
// update smallest and reset count to 1
if (curr_min < smallest) {
smallest = curr_min;
count = 1;
}
// if abs value is equal to smallest
// increment count value
else if (curr_min == smallest)
count++;
s.insert(arr[i]);
} // print result
cout << "Minimal Value = " << smallest << "\n";
cout << "Total Pairs = " << count << "\n";
}
// driver program
int main()
{
int arr[] = { 3, 5, 7, 5, 1, 9, 9 };
int k = 12;
int n = sizeof(arr) / sizeof(arr[0]);
pairs(arr, n, k);
return 0;
}
Python3
# Python program to find number of pairs
# and minimal possible value
from sys import maxsize
from bisect import bisect_left, bisect_right
# function for finding pairs and min value
def pairs(arr, n, k):
# initialize smallest and count
smallest = maxsize
count = 0
s = set()
# iterate over all pairs
s.add(arr[0])
for i in range(1, n):
# Find the closest elements to k - arr[i]
sorted_s = sorted(s)
index = bisect_left(sorted_s, k - arr[i])
if index == len(sorted_s):
lower = sorted_s[index - 1]
else:
lower = sorted_s[index]
index = bisect_right(sorted_s, k - arr[i])
if index == len(sorted_s):
upper = sorted_s[index - 1]
else:
upper = sorted_s[index]
# Find absolute value of the pairs formed
# with closest greater and smaller elements.
curr_min = min(abs(lower + arr[i] - k), abs(upper + arr[i] - k))
# is abs value is smaller than smallest
# update smallest and reset count to 1
if curr_min < smallest:
smallest = curr_min
count = 1
# if abs value is equal to smallest
# increment count value
elif curr_min == smallest:
count += 1
s.add(arr[i])
# print result
print("Minimal Value = ", smallest)
print("Total Pairs = ", count)
# driver program
arr = [3, 5, 7, 5, 1, 9, 9]
k = 12
n = len(arr)
pairs(arr, n, k)
# This code is contributed by vikramshirsath177.
Java
import java.util.*;
class Main {
// function for finding pairs and min value
static void pairs(final int[] arr,final int n,final int k) {
// initialize smallest and count
int smallest = Integer.MAX_VALUE, count = 0;
Set<Integer> s = new TreeSet<>();
// iterate over all pairs
s.add(arr[0]);
for (int i = 1; i < n; i++) {
// Find the closest elements to k - arr[i]
int lower = Integer.MIN_VALUE;
int upper = Integer.MAX_VALUE;
for (Integer x : s) {
if (x <= (k - arr[i]) && x >= lower) {
lower = x;
}
if (x >= (k - arr[i]) && x <= upper) {
upper = x;
}
}
// Find absolute value of the pairs formed
// with closest greater and smaller elements.
int curr_min = Math.min(Math.abs(lower + arr[i] - k), Math.abs(upper + arr[i] - k));
// is abs value is smaller than smallest
// update smallest and reset count to 1
if (curr_min < smallest) {
smallest = curr_min;
count = 1;
}
// if abs value is equal to smallest
// increment count value
else if (curr_min == smallest)
count++;
s.add(arr[i]);
} // print result
System.out.println("Minimal Value = " + smallest);
System.out.println("Total Pairs = " + count);
}
// driver program
public static void main(String[] args) {
int[] arr = {3, 5, 7, 5, 1, 9, 9};
int k = 12;
int n = arr.length;
pairs(arr, n, k);
}
}
JavaScript
function pairs(arr, n, k) {
// initialize smallest and count
let smallest = Number.MAX_SAFE_INTEGER;
let count = 0;
let s = new Set();
// iterate over all pairs
s.add(arr[0]);
for (let i = 1; i < n; i++) {
// Find the closest elements to k - arr[i]
let lower = [...s].find((element) => element >= k - arr[i]);
let upper = [...s].find((element) => element >= k - arr[i]);
// Find absolute value of the pairs formed
// with closest greater and smaller elements.
let curr_min = Math.min(Math.abs(lower + arr[i] - k), Math.abs(upper + arr[i] - k));
// if abs value is smaller than smallest
// update smallest and reset count to 1
if (curr_min < smallest) {
smallest = curr_min;
count = 1;
}
// if abs value is equal to smallest
// increment count value
else if (curr_min === smallest)
count++;
s.add(arr[i]);
}
// print result
console.log(`Minimal Value = ${smallest}`);
console.log(`Total Pairs = ${count}`);
}
// driver program
let arr = [3, 5, 7, 5, 1, 9, 9];
let k = 12;
let n = arr.length;
pairs(arr, n, k);
C#
using System;
using System.Collections.Generic;
using System.Linq;
class Program
{
// function for finding pairs and min value
static void pairs(int[] arr, int n, int k)
{
// initialize smallest and count
int smallest = int.MaxValue, count = 0;
SortedSet<int> s = new SortedSet<int>();
// iterate over all pairs
s.Add(arr[0]);
for (int i = 1; i < n; i++)
{
// Find the closest elements to k - arr[i]
int lower = s.Where(e => e >= k - arr[i]).DefaultIfEmpty(int.MinValue).First();
int upper = s.Where(e => e > k - arr[i]).DefaultIfEmpty(int.MaxValue).First();
// Find absolute value of the pairs formed
// with closest greater and smaller elements.
int curr_min = Math.Min(Math.Abs(lower + arr[i] - k), Math.Abs(upper + arr[i] - k));
// if abs value is smaller than smallest
// update smallest and reset count to 1
if (curr_min < smallest)
{
smallest = curr_min;
count = 1;
}
// if abs value is equal to smallest
// increment count value
else if (curr_min == smallest)
{
count++;
}
s.Add(arr[i]);
}
// print result
Console.WriteLine("Minimal Value = " + smallest);
Console.WriteLine("Total Pairs = " + count);
}
// driver program
static void Main(string[] args)
{
int[] arr = { 3, 5, 7, 5, 1, 9, 9 };
int k = 12;
int n = arr.Length;
pairs(arr, n, k);
}
}
OutputMinimal Value = 0
Total Pairs = 4
Time Complexity : O(n Log n)
Auxiliary Space: O(n)
Similar Reads
Binary Search Tree
A Binary Search Tree (or BST) is a data structure used in computer science for organizing and storing data in a sorted manner. Each node in a Binary Search Tree has at most two children, a left child and a right child, with the left child containing values less than the parent node and the right chi
3 min read
Introduction to Binary Search Tree
Binary Search Tree is a data structure used in computer science for organizing and storing data in a sorted manner. Binary search tree follows all properties of binary tree and for every nodes, its left subtree contains values less than the node and the right subtree contains values greater than the
3 min read
Applications of BST
Binary Search Tree (BST) is a data structure that is commonly used to implement efficient searching, insertion, and deletion operations along with maintaining sorted sequence of data. Please remember the following properties of BSTs before moving forward.The left subtree of a node contains only node
3 min read
Applications, Advantages and Disadvantages of Binary Search Tree
A Binary Search Tree (BST) is a data structure used to storing data in a sorted manner. Each node in a Binary Search Tree has at most two children, a left child and a right child, with the left child containing values less than the parent node and the right child containing values greater than the p
2 min read
Insertion in Binary Search Tree (BST)
Given a BST, the task is to insert a new node in this BST.Example: How to Insert a value in a Binary Search Tree:A new key is always inserted at the leaf by maintaining the property of the binary search tree. We start searching for a key from the root until we hit a leaf node. Once a leaf node is fo
15 min read
Searching in Binary Search Tree (BST)
Given a BST, the task is to search a node in this BST. For searching a value in BST, consider it as a sorted array. Now we can easily perform search operation in BST using Binary Search Algorithm. Input: Root of the below BST Output: TrueExplanation: 8 is present in the BST as right child of rootInp
7 min read
Deletion in Binary Search Tree (BST)
Given a BST, the task is to delete a node in this BST, which can be broken down into 3 scenarios:Case 1. Delete a Leaf Node in BSTDeletion in BSTCase 2. Delete a Node with Single Child in BSTDeleting a single child node is also simple in BST. Copy the child to the node and delete the node. Deletion
10 min read
Binary Search Tree (BST) Traversals â Inorder, Preorder, Post Order
Given a Binary Search Tree, The task is to print the elements in inorder, preorder, and postorder traversal of the Binary Search Tree. Input: A Binary Search TreeOutput: Inorder Traversal: 10 20 30 100 150 200 300Preorder Traversal: 100 20 10 30 200 150 300Postorder Traversal: 10 30 20 150 300 200 1
10 min read
Balance a Binary Search Tree
Given a BST (Binary Search Tree) that may be unbalanced, the task is to convert it into a balanced BST that has the minimum possible height.Examples: Input: Output: Explanation: The above unbalanced BST is converted to balanced with the minimum possible height.Input: Output: Explanation: The above u
10 min read
Self-Balancing Binary Search Trees
Self-Balancing Binary Search Trees are height-balanced binary search trees that automatically keep the height as small as possible when insertion and deletion operations are performed on the tree. The height is typically maintained in order of logN so that all operations take O(logN) time on average
4 min read