numpy.atleast_3d() in Python Last Updated : 28 Nov, 2018 Comments Improve Suggest changes Like Article Like Report numpy.atleast_3d() function is used when we want to Convert inputs to arrays with at least three dimension. Scalar, 1 and 2 dimensional inputs are converted to 3-dimensional arrays, whilst higher-dimensional inputs are preserved. Input includes scalar, lists, lists of tuples, tuples, tuples of tuples, tuples of lists and ndarrays. Syntax : numpy.atleast_3d(*arrays) Parameters : arrays1, arrays2, ... : [array_like] One or more array-like sequences. Non-array inputs are converted to arrays. Arrays that already have three or more dimensions are preserved. Return : An array, or list of arrays, each with arr.ndim >= 3. Copies are avoided where possible, and views with three or more dimensions are returned. For example, a 1-D array of shape (N, ) becomes a view of shape (1, N, 1), and a 2-D array of shape (M, N) becomes a view of shape (M, N, 1). Code #1 : Working Python # Python program explaining # numpy.atleast_3d() function import numpy as geek in_num = 10 print ("Input number : ", in_num) out_arr = geek.atleast_3d(in_num) print ("output 3d array from input number : ", out_arr) Output : Input number : 10 output 3d array from input number : [[[10]]] Code #2 : Working Python # Python program explaining # numpy.atleast_3d() function import numpy as geek my_list = [[2, 6, 10], [8, 12, 16]] print ("Input list : ", my_list) out_arr = geek.atleast_3d(my_list) print ("output array : ", out_arr) Output : Input list : [[2, 6, 10], [8, 12, 16]] output array : [[[ 2] [ 6] [10]] [[ 8] [12] [16]]] Code #3 : Working Python # Python program explaining # numpy.atleast_3d() function # when inputs are in high dimension import numpy as geek in_arr = geek.arange(16).reshape(1, 4, 4) print ("Input array :\n ", in_arr) out_arr = geek.atleast_3d(in_arr) print ("output array :\n ", out_arr) print(in_arr is out_arr) Output : Input array : [[[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11] [12 13 14 15]]] output array : [[[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11] [12 13 14 15]]] True Comment More info J jana_sayantan Follow Improve Article Tags : Python Python-numpy Python numpy-arrayManipulation Explore Python FundamentalsPython Introduction 3 min read Input and Output in Python 4 min read Python Variables 5 min read Python Operators 5 min read Python Keywords 2 min read Python Data Types 7 min read Conditional Statements in Python 3 min read Loops in Python - For, While and Nested Loops 6 min read Python Functions 5 min read Recursion in Python 4 min read Python Lambda Functions 5 min read Python Data StructuresPython String 5 min read Python Lists 4 min read Python Tuples 4 min read Python Dictionary 3 min read Python Sets 6 min read Python Arrays 7 min read List Comprehension in Python 4 min read Advanced PythonPython OOP Concepts 11 min read Python Exception Handling 5 min read File Handling in Python 4 min read Python Database Tutorial 4 min read Python MongoDB Tutorial 2 min read Python MySQL 9 min read Python Packages 12 min read Python Modules 7 min read Python DSA Libraries 15 min read List of Python GUI Library and Packages 3 min read Data Science with PythonNumPy Tutorial - Python Library 3 min read Pandas Tutorial 6 min read Matplotlib Tutorial 5 min read Python Seaborn Tutorial 15+ min read StatsModel Library- Tutorial 4 min read Learning Model Building in Scikit-learn 8 min read TensorFlow Tutorial 2 min read PyTorch Tutorial 7 min read Web Development with PythonFlask Tutorial 8 min read Django Tutorial | Learn Django Framework 7 min read Django ORM - Inserting, Updating & Deleting Data 4 min read Templating With Jinja2 in Flask 6 min read Django Templates 7 min read Python | Build a REST API using Flask 3 min read How to Create a basic API using Django Rest Framework ? 4 min read Python PracticePython Quiz 3 min read Python Coding Practice 1 min read Python Interview Questions and Answers 15+ min read Like