numpy.ma.mask_rows() function | Python
Last Updated :
13 Mar, 2021
Improve
In this numpy.ma.mask_rows() function, mask rows of a 2D array that contain masked values. This function is a shortcut to mask_rowcols with axis equal to 0.
Syntax : numpy.ma.mask_rows(arr, axis = None)
Parameters :
arr : [array_like, MaskedArray] The array to mask. The result is a MaskedArray.
axis : [int, optional] Axis along which to perform the operation. Default is None.
Return : [MaskedArray] A modified version of the input array.
Code #1 :
- Python3
Python3
# Python program explaining # numpy.ma.mask_rows() function # importing numpy as geek # and numpy.ma module as ma import numpy as geek import numpy.ma as ma arr = geek.zeros(( 4 , 4 ), dtype = int ) arr[ 2 , 2 ] = 1 arr = ma.masked_equal(arr, 1 ) gfg = ma.mask_rows(arr) print (gfg) |
Output :
[[0 0 0 0] [0 0 0 0] [-- -- -- --] [0 0 0 0]]
Code #2 :
- Python3
Python3
# Python program explaining # numpy.ma.mask_rows() function # importing numpy as geek # and numpy.ma module as ma import numpy as geek import numpy.ma as ma arr = geek.zeros(( 5 , 5 ), dtype = int ) arr[ 3 , 3 ] = 1 arr = ma.masked_equal(arr, 1 ) gfg = ma.mask_rows(arr) print (gfg) |
Output :
[[0 0 0 0 0] [0 0 0 0 0] [0 0 0 0 0] [-- -- -- -- --] [0 0 0 0 0]]