numpy.zeros_like() in Python
Last Updated :
08 Mar, 2024
Improve
This numpy method returns an array of given shape and type as given array, with zeros.
Syntax: numpy.zeros_like(array, dtype = None, order = 'K', subok = True)
Parameters :
array : array_like input subok : [optional, boolean]If true, then newly created array will be sub-class of array; otherwise, a base-class array order : C_contiguous or F_contiguous C-contiguous order in memory(last index varies the fastest) C order means that operating row-rise on the array will be slightly quicker FORTRAN-contiguous order in memory (first index varies the fastest). F order means that column-wise operations will be faster. dtype : [optional, float(byDefault)] Data type of returned array.
Returns :
ndarray of zeros having given shape, order and datatype.
Code 1 :
# Python Programming illustrating
# numpy.zeros_like method
import numpy as geek
array = geek.arange(10).reshape(5, 2)
print("Original array : \n", array)
b = geek.zeros_like(array, float)
print("\nMatrix b : \n", b)
array = geek.arange(8)
c = geek.zeros_like(array)
print("\nMatrix c : \n", c)
Output:
Original array : [[0 1] [2 3] [4 5] [6 7] [8 9]] Matrix b : [[ 0. 0.] [ 0. 0.] [ 0. 0.] [ 0. 0.] [ 0. 0.]] Matrix c : [0 0 0 0 0 0 0 0]
Code 2 :
# Python Programming illustrating
# numpy.zeros_like method
import numpy as geek
array = geek.arange(10).reshape(5, 2)
print("Original array : \n", array)
array = geek.arange(4).reshape(2, 2)
c = geek.zeros_like(array, dtype = 'float')
print("\nMatrix : \n", c)
array = geek.arange(8)
c = geek.zeros_like(array, dtype = 'float', order ='C')
print("\nMatrix : \n", c)
Output :
Original array : [[0 1] [2 3] [4 5] [6 7] [8 9]] Matrix : [[ 0. 0.] [ 0. 0.]] Matrix : [ 0. 0. 0. 0. 0. 0. 0. 0.]
Note :
Also, these codes won’t run on online IDE's. Please run them on your systems to explore the working