Thread in Operating System Last Updated : 21 Feb, 2025 Comments Improve Suggest changes Like Article Like Report A thread is a single sequence stream within a process. Threads are also called lightweight processes as they possess some of the properties of processes. Each thread belongs to exactly one process.In an operating system that supports multithreading, the process can consist of many threads. But threads can be effective only if the CPU is more than 1 otherwise two threads have to context switch for that single CPU.All threads belonging to the same process share - code section, data section, and OS resources (e.g. open files and signals)But each thread has its own (thread control block) - thread ID, program counter, register set, and a stackAny operating system process can execute a thread. we can say that single process can have multiple threads.Why Do We Need Thread?Threads run in concurrent manner that improves the application performance. Each such thread has its own CPU state and stack, but they share the address space of the process and the environment. For example, when we work on Microsoft Word or Google Docs, we notice that while we are typing, multiple things happen together (formatting is applied, page is changed and auto save happens). Threads can share common data so they do not need to use inter-process communication. Like the processes, threads also have states like ready, executing, blocked, etc. Priority can be assigned to the threads just like the process, and the highest priority thread is scheduled first.Each thread has its own Thread Control Block (TCB). Like the process, a context switch occurs for the thread, and register contents are saved in (TCB). As threads share the same address space and resources, synchronization is also required for the various activities of the thread.Components of ThreadsThese are the basic components of the Operating System.Stack Space: Stores local variables, function calls, and return addresses specific to the thread.Register Set: Hold temporary data and intermediate results for the thread's execution.Program Counter: Tracks the current instruction being executed by the thread.Types of Thread in Operating SystemThreads are of two types. These are described below.User Level Thread Kernel Level ThreadThreads1. User Level ThreadUser Level Thread is a type of thread that is not created using system calls. The kernel has no work in the management of user-level threads. User-level threads can be easily implemented by the user. In case when user-level threads are single-handed processes, kernel-level thread manages them. Let's look at the advantages and disadvantages of User-Level Thread.Advantages of User-Level ThreadsImplementation of the User-Level Thread is easier than Kernel Level Thread.Context Switch Time is less in User Level Thread.User-Level Thread is more efficient than Kernel-Level Thread.Because of the presence of only Program Counter, Register Set, and Stack Space, it has a simple representation.Disadvantages of User-Level ThreadsThe operating system is unaware of user-level threads, so kernel-level optimizations, like load balancing across CPUs, are not utilized.If a user-level thread makes a blocking system call, the entire process (and all its threads) is blocked, reducing efficiency.User-level thread scheduling is managed by the application, which can become complex and may not be as optimized as kernel-level scheduling.2. Kernel Level ThreadsA kernel Level Thread is a type of thread that can recognize the Operating system easily. Kernel Level Threads has its own thread table where it keeps track of the system. The operating System Kernel helps in managing threads. Kernel Threads have somehow longer context switching time. Kernel helps in the management of threads.Advantages of Kernel-Level ThreadsKernel-level threads can run on multiple processors or cores simultaneously, enabling better utilization of multicore systems.The kernel is aware of all threads, allowing it to manage and schedule them effectively across available resources.Applications that block frequency are to be handled by the Kernel-Level Threads.The kernel can distribute threads across CPUs, ensuring optimal load balancing and system performance.Disadvantages of Kernel-Level threadsContext switching between kernel-level threads is slower compared to user-level threads because it requires mode switching between user and kernel space.Managing kernel-level threads involves frequent system calls and kernel interactions, leading to increased CPU overhead.A large number of threads may overload the kernel scheduler, leading to potential performance degradation in systems with many threads.Implementation of this type of thread is a little more complex than a user-level thread.For more, refer to the Difference Between User-Level Thread and Kernel-Level Thread.Difference Between Process and ThreadThe primary difference is that threads within the same process run in a shared memory space, while processes run in separate memory spaces. Threads are not independent of one another like processes are, and as a result, threads share with other threads their code section, data section, and OS resources (like open files and signals). But, like a process, a thread has its own program counter (PC), register set, and stack space. For more, refer to Difference Between Process and Thread.What is Multi-Threading? A thread is also known as a lightweight process. The idea is to achieve parallelism by dividing a process into multiple threads. For example, in a browser, multiple tabs can be different threads. MS Word uses multiple threads: one thread to format the text, another thread to process inputs, etc. More advantages of multithreading are discussed below.Multithreading is a technique used in operating systems to improve the performance and responsiveness of computer systems. Multithreading allows multiple threads (i.e., lightweight processes) to share the same resources of a single process, such as the CPU, memory, and I/O devices.Single Threaded vs Multi-threaded ProcessMultithreading can be done without OS support, as seen in Java's multithreading model. In Java, threads are implemented using the Java Virtual Machine (JVM), which provides its own thread management. These threads, also called user-level threads, are managed independently of the underlying operating system.Application itself manages the creation, scheduling, and execution of threads without relying on the operating system's kernel. The application contains a threading library that handles thread creation, scheduling, and context switching. The operating system is unaware of User-Level threads and treats the entire process as a single-threaded entity.Benefits of Thread in Operating SystemResponsiveness: If the process is divided into multiple threads, if one thread completes its execution, then its output can be immediately returned.Faster context switch: Context switch time between threads is lower compared to the process context switch. Process context switching requires more overhead from the CPU. Effective utilization of multiprocessor system: If we have multiple threads in a single process, then we can schedule multiple threads on multiple processors. This will make process execution faster. Resource sharing: Resources like code, data, and files can be shared among all threads within a process. Note: Stacks and registers can't be shared among the threads. Each thread has its own stack and registers. Communication: Communication between multiple threads is easier, as the threads share a common address space. while in the process we have to follow some specific communication techniques for communication between the two processes. Enhanced throughput of the system: If a process is divided into multiple threads, and each thread function is considered as one job, then the number of jobs completed per unit of time is increased, thus increasing the throughput of the system. Comment More infoAdvertise with us Next Article Threads and its Types in Operating System kartik Follow Improve Article Tags : Operating Systems Processes & Threads Similar Reads Operating System Tutorial An Operating System(OS) is a software that manages and handles hardware and software resources of a computing device. Responsible for managing and controlling all the activities and sharing of computer resources among different running applications.A low-level Software that includes all the basic fu 4 min read OS BasicsWhat is an Operating System?An Operating System is a System software that manages all the resources of the computing device. Acts as an interface between the software and different parts of the computer or the computer hardware. Manages the overall resources and operations of the computer. Controls and monitors the execution o 9 min read Functions of Operating SystemAn Operating System acts as a communication interface between the user and computer hardware. Its purpose is to provide a platform on which a user can execute programs conveniently and efficiently. The main goal of an operating system is to make the computer environment more convenient to use and to 7 min read Types of Operating SystemsOperating Systems can be categorized according to different criteria like whether an operating system is for mobile devices (examples Android and iOS) or desktop (examples Windows and Linux). Here, we are going to classify based on functionalities an operating system provides.8 Main Operating System 11 min read Need and Functions of Operating SystemsThe fundamental goal of an Operating System is to execute user programs and to make tasks easier. Various application programs along with hardware systems are used to perform this work. Operating System is software that manages and controls the entire set of resources and effectively utilizes every 9 min read Commonly Used Operating SystemThere are various types of Operating Systems used throughout the world and this depends mainly on the type of operations performed. These Operating Systems are manufactured by large multinational companies like Microsoft, Apple, etc. Let's look at the few most commonly used OS in the real world: Win 9 min read Structure of Operating SystemOperating System ServicesAn operating system is software that acts as an intermediary between the user and computer hardware. It is a program with the help of which we are able to run various applications. It is the one program that is running all the time. Every computer must have an operating system to smoothly execute ot 6 min read Introduction of System CallA system call is a programmatic way in which a computer program requests a service from the kernel of the operating system on which it is executed. A system call is a way for programs to interact with the operating system. A computer program makes a system call when it requests the operating system' 11 min read System Programs in Operating SystemSystem Programming can be defined as the act of building Systems Software using System Programming Languages. According to Computer Hierarchy, Hardware comes first then is Operating System, System Programs, and finally Application Programs.In the context of an operating system, system programs are n 5 min read Operating Systems StructuresThe operating system can be implemented with the help of various structures. The structure of the OS depends mainly on how the various standard components of the operating system are interconnected and merge into the kernel. This article discusses a variety of operating system implementation structu 8 min read History of Operating SystemAn operating system is a type of software that acts as an interface between the user and the hardware. It is responsible for handling various critical functions of the computer and utilizing resources very efficiently so the operating system is also known as a resource manager. The operating system 8 min read Booting and Dual Booting of Operating SystemWhen a computer or any other computing device is in a powerless state, its operating system remains stored in secondary storage like a hard disk or SSD. But, when the computer is started, the operating system must be present in the main memory or RAM of the system.What is Booting?When a computer sys 7 min read Types of OSBatch Processing Operating SystemIn the beginning, computers were very large types of machinery that ran from a console table. In all-purpose, card readers or tape drivers were used for input, and punch cards, tape drives, and line printers were used for output. Operators had no direct interface with the system, and job implementat 6 min read Multiprogramming in Operating SystemAs the name suggests, Multiprogramming means more than one program can be active at the same time. Before the operating system concept, only one program was to be loaded at a time and run. These systems were not efficient as the CPU was not used efficiently. For example, in a single-tasking system, 5 min read Time Sharing Operating SystemMultiprogrammed, batched systems provide an environment where various system resources were used effectively, but it did not provide for user interaction with computer systems. Time-sharing is a logical extension of multiprogramming. The CPU performs many tasks by switches that are so frequent that 5 min read What is a Network Operating System?The basic definition of an operating system is that the operating system is the interface between the computer hardware and the user. In daily life, we use the operating system on our devices which provides a good GUI, and many more features. Similarly, a network operating system(NOS) is software th 2 min read Real Time Operating System (RTOS)Real-time operating systems (RTOS) are used in environments where a large number of events, mostly external to the computer system, must be accepted and processed in a short time or within certain deadlines. such applications are industrial control, telephone switching equipment, flight control, and 6 min read Process ManagementIntroduction of Process ManagementProcess Management for a single tasking or batch processing system is easy as only one process is active at a time. With multiple processes (multiprogramming or multitasking) being active, the process management becomes complex as a CPU needs to be efficiently utilized by multiple processes. Multipl 8 min read Process Table and Process Control Block (PCB)While creating a process, the operating system performs several operations. To identify the processes, it assigns a process identification number (PID) to each process. As the operating system supports multi-programming, it needs to keep track of all the processes. For this task, the process control 6 min read Operations on ProcessesProcess operations refer to the actions or activities performed on processes in an operating system. These operations include creating, terminating, suspending, resuming, and communicating between processes. Operations on processes are crucial for managing and controlling the execution of programs i 5 min read Process Schedulers in Operating SystemA process is the instance of a computer program in execution. Scheduling is important in operating systems with multiprogramming as multiple processes might be eligible for running at a time.One of the key responsibilities of an Operating System (OS) is to decide which programs will execute on the C 7 min read Inter Process Communication (IPC)Processes need to communicate with each other in many situations. Inter-Process Communication or IPC is a mechanism that allows processes to communicate. It helps processes synchronize their activities, share information, and avoid conflicts while accessing shared resources.Types of Process Let us f 5 min read Context Switching in Operating SystemContext Switching in an operating system is a critical function that allows the CPU to efficiently manage multiple processes. By saving the state of a currently active process and loading the state of another, the system can handle various tasks simultaneously without losing progress. This switching 4 min read Preemptive and Non-Preemptive SchedulingIn operating systems, scheduling is the method by which processes are given access the CPU. Efficient scheduling is essential for optimal system performance and user experience. There are two primary types of CPU scheduling: preemptive and non-preemptive. Understanding the differences between preemp 5 min read CPU Scheduling in OSCPU Scheduling in Operating SystemsCPU scheduling is a process used by the operating system to decide which task or process gets to use the CPU at a particular time. This is important because a CPU can only handle one task at a time, but there are usually many tasks that need to be processed. The following are different purposes of a 8 min read CPU Scheduling CriteriaCPU scheduling is essential for the system's performance and ensures that processes are executed correctly and on time. Different CPU scheduling algorithms have other properties and the choice of a particular algorithm depends on various factors. Many criteria have been suggested for comparing CPU s 6 min read Multiple-Processor Scheduling in Operating SystemIn multiple-processor scheduling multiple CPUs are available and hence Load Sharing becomes possible. However multiple processor scheduling is more complex as compared to single processor scheduling. In multiple processor scheduling, there are cases when the processors are identical i.e. HOMOGENEOUS 8 min read Thread SchedulingThere is a component in Java that basically decides which thread should execute or get a resource in the operating system. Scheduling of threads involves two boundary scheduling. Scheduling of user-level threads (ULT) to kernel-level threads (KLT) via lightweight process (LWP) by the application dev 7 min read Threads in OSThread in Operating SystemA thread is a single sequence stream within a process. Threads are also called lightweight processes as they possess some of the properties of processes. Each thread belongs to exactly one process.In an operating system that supports multithreading, the process can consist of many threads. But threa 7 min read Threads and its Types in Operating SystemA thread is a single sequence stream within a process. Threads have the same properties as the process so they are called lightweight processes. On single core processor, threads are are rapidly switched giving the illusion that they are executing in parallel. In multi-core systems, threads can exec 8 min read Multithreading in Operating SystemA thread is a path that is followed during a programâs execution. The majority of programs written nowadays run as a single thread. For example, a program is not capable of reading keystrokes while making drawings. These tasks cannot be executed by the program at the same time. This problem can be s 7 min read Process SynchronizationIntroduction of Process SynchronizationProcess Synchronization is used in a computer system to ensure that multiple processes or threads can run concurrently without interfering with each other.The main objective of process synchronization is to ensure that multiple processes access shared resources without interfering with each other an 10 min read Race Condition VulnerabilityRace condition occurs when multiple threads read and write the same variable i.e. they have access to some shared data and they try to change it at the same time. In such a scenario threads are âracingâ each other to access/change the data. This is a major security vulnerability.What is Race Conditi 10 min read Critical Section in SynchronizationA critical section is a segment of a program where shared resources, such as memory, files, or ports, are accessed by multiple processes or threads. To prevent issues like data inconsistency and race conditions, synchronization techniques ensure that only one process or thread accesses the critical 8 min read Mutual Exclusion in SynchronizationDuring concurrent execution of processes, processes need to enter the critical section (or the section of the program shared across processes) at times for execution. It might happen that because of the execution of multiple processes at once, the values stored in the critical section become inconsi 6 min read Critical Section Problem SolutionPeterson's Algorithm in Process SynchronizationPeterson's Algorithm is a classic solution to the critical section problem in process synchronization. It ensures mutual exclusion meaning only one process can access the critical section at a time and avoids race conditions. The algorithm uses two shared variables to manage the turn-taking mechanis 15+ min read Semaphores in Process SynchronizationSemaphores are a tool used in operating systems to help manage how different processes (or programs) share resources, like memory or data, without causing conflicts. A semaphore is a special kind of synchronization data that can be used only through specific synchronization primitives. Semaphores ar 15+ min read Semaphores and its typesA semaphore is a tool used in computer science to manage how multiple programs or processes access shared resources, like memory or files, without causing conflicts. Semaphores are compound data types with two fields one is a Non-negative integer S.V(Semaphore Value) and the second is a set of proce 6 min read Producer Consumer Problem using Semaphores | Set 1The Producer-Consumer problem is a classic synchronization issue in operating systems. It involves two types of processes: producers, which generate data, and consumers, which process that data. Both share a common buffer. The challenge is to ensure that the producer doesn't add data to a full buffe 4 min read Readers-Writers Problem | Set 1 (Introduction and Readers Preference Solution)The readers-writer problem in operating systems is about managing access to shared data. It allows multiple readers to read data at the same time without issues but ensures that only one writer can write at a time, and no one can read while writing is happening. This helps prevent data corruption an 7 min read Dining Philosopher Problem Using SemaphoresThe Dining Philosopher Problem states that K philosophers are seated around a circular table with one chopstick between each pair of philosophers. There is one chopstick between each philosopher. A philosopher may eat if he can pick up the two chopsticks adjacent to him. One chopstick may be picked 11 min read Hardware Synchronization Algorithms : Unlock and Lock, Test and Set, SwapProcess Synchronization problems occur when two processes running concurrently share the same data or same variable. The value of that variable may not be updated correctly before its being used by a second process. Such a condition is known as Race Around Condition. There are a software as well as 4 min read Deadlocks & Deadlock Handling MethodsIntroduction of Deadlock in Operating SystemA deadlock is a situation where a set of processes is blocked because each process is holding a resource and waiting for another resource acquired by some other process. In this article, we will discuss deadlock, its necessary conditions, etc. in detail.Deadlock is a situation in computing where two 11 min read Conditions for Deadlock in Operating SystemA deadlock is a situation where a set of processes is blocked because each process is holding a resource and waiting for another resource acquired by some other process. In this article, we will discuss what deadlock is and the necessary conditions required for deadlock.What is Deadlock?Deadlock is 8 min read Banker's Algorithm in Operating SystemBanker's Algorithm is a resource allocation and deadlock avoidance algorithm used in operating systems. It ensures that a system remains in a safe state by carefully allocating resources to processes while avoiding unsafe states that could lead to deadlocks.The Banker's Algorithm is a smart way for 8 min read Wait For Graph Deadlock Detection in Distributed SystemDeadlocks are a fundamental problem in distributed systems. A process may request resources in any order and a process can request resources while holding others. A Deadlock is a situation where a set of processes are blocked as each process in a Distributed system is holding some resources and that 5 min read Handling DeadlocksDeadlock is a situation where a process or a set of processes is blocked, waiting for some other resource that is held by some other waiting process. It is an undesirable state of the system. In other words, Deadlock is a critical situation in computing where a process, or a group of processes, beco 8 min read Deadlock Prevention And AvoidanceDeadlock prevention and avoidance are strategies used in computer systems to ensure that different processes can run smoothly without getting stuck waiting for each other forever. Think of it like a traffic system where cars (processes) must move through intersections (resources) without getting int 5 min read Deadlock Detection And RecoveryDeadlock Detection and Recovery is the mechanism of detecting and resolving deadlocks in an operating system. In operating systems, deadlock recovery is important to keep everything running smoothly. A deadlock occurs when two or more processes are blocked, waiting for each other to release the reso 6 min read Deadlock Ignorance in Operating SystemIn this article we will study in brief about what is Deadlock followed by Deadlock Ignorance in Operating System. What is Deadlock? If each process in the set of processes is waiting for an event that only another process in the set can cause it is actually referred as called Deadlock. In other word 5 min read Recovery from Deadlock in Operating SystemIn today's world of computer systems and multitasking environments, deadlock is an undesirable situation that can bring operations to a halt. When multiple processes compete for exclusive access to resources and end up in a circular waiting pattern, a deadlock occurs. To maintain the smooth function 8 min read Like