Optimized Longest Path is NP Complete Last Updated : 02 Nov, 2023 Comments Improve Suggest changes Like Article Like Report Optimized Longest Path Problem: The optimized longest path problem states that given a graph G, of a set of vertices V and edges E, the task is to prove that there is a path of length at least K between a set of nodes Vs and Ve. Problem Statement: Given a graph G(V, E, K) and a set of nodes Vs and Ve with the sequence of nodes, of length ≥ K. Explanation:An instance of the problem is an input specified to the problem. An instance of the optimized-longest path problem is G(V, E, Vs, Ve, K). Since an NP-complete problem is a problem which is both in NP and NP-Hard, the proof for the statement that a problem is NP-Complete consists of two parts: The problem itself is in NP class.All other problems in NP class can be polynomial-time reducible to that.(B is polynomial-time reducible to C is denoted as B≤PC)If the 2nd condition is only satisfied then the problem is called NP-Hard. But it is not possible to reduce every NP problem into another NP problem to show its NP-Completeness all the time. That is why if we want to show a problem is NP-Complete we just show that the problem is in NP and any NP-Complete problem is reducible to that then we are done, i.e. if B is NP-Complete and B ≤ PC For C in NP, then C is NP-Complete. Thus, we can verify that the Optimized Longest Path Problem is NP-Complete using the following two propositions: Optimized-longest Path Problem is in NP:If any problem is in NP, given a 'certificate', which is a solution to the problem and an instance of the problem then it can be verified (check whether the solution given is correct or not) that the certificate in polynomial time. This can be done by a path P, consisting of a set of vertices < V1, V2, V3, ....Vn >. Verify if the path connects V1, and Vn completely and the length of the path is at most K.Optimized-longest Path Problem is NP-Hard:In order to prove that the Longest Path is NP-Hard, deduce a reduction from a known NP-Hard to the problem. Carry out a reduction in which an undirected Hamiltonian Path problem can be reduced to the Longest Path problem. The undirected hamiltonian path uses the input a graph G(V1, Vn) where graph G has nodes V1 and Vn. Undirected Hamiltonian Path is an Undirected path along the graph starting at one vertex and ending at another traversing all nodes.Now, let K be the numbers of nodes in G. Every instance of Undirected Hamiltonian Path can be converted to the Longest Path in the following way:For input G(V1, Vn), output G(V1, Vn, k). This reduction takes polynomial time by simply counting the number of vertices in G. The reduction can be proved by the following two propositions:Assume the original graph G(V, E) is provided with nodes V1 and Vn has an undirected Hamiltonian path, which traverses all the vertices, therefore G(V, E, K) is true because any two nodes in G will be connected by a path of length equal to its nodes i.e., K therefore Longest Path problem holds.Let us assume the graph G'(V, E, Vs, Ve, K) has a Lpath of length K from Vs to Ve, which implies G' contains a simple path of length K from Vs to Ve.But, G contains K vertices, hence traverses all vertices starting at Vs and ending at Ve forming a hamiltonian path, G'(Vs, Ve). Let V1 ≡ B and Vn ≡ DNow, G has an Undirected Hamiltonian Path ≡ BCAD of K = 4.Therefore, G contains an optimized path of length = 4 between B and D. Comment More infoAdvertise with us Next Article Optimized Longest Path is NP Complete Y yashchuahan Follow Improve Article Tags : Misc Graph Analysis of Algorithms DSA NP Complete +1 More Practice Tags : GraphMisc Similar Reads P, NP, CoNP, NP hard and NP complete | Complexity Classes In computer science, problems are divided into classes known as Complexity Classes. In complexity theory, a Complexity Class is a set of problems with related complexity. With the help of complexity theory, we try to cover the following.Problems that cannot be solved by computers.Problems that can b 5 min read Introduction to NP-Complete Complexity Classes NP-complete problems are a subset of the larger class of NP (nondeterministic polynomial time) problems. NP problems are a class of computational problems that can be solved in polynomial time by a non-deterministic machine and can be verified in polynomial time by a deterministic Machine. A problem 5 min read NP-Hard Class A 'P' problem is said to be NP-Hard when all 'Q' belonging in NP can be reduced in polynomial time (n^k where k is some constant) to 'P' assuming a solution for 'P' takes 1 unit time. NP-Hard is a computational complexity theory that acts as a defining property for the class of problems that are "at 2 min read Difference between NP hard and NP complete problem All NP Complete Problems are NP-Hard but vice versa is not true. NP-Complete problems are subset of NP Problems. NP Problems : NP problems are a class of computational problems that can be solved in polynomial time by a non-deterministic machine and can be verified in polynomial time by a determinis 2 min read NP-Complete Complexity ProofsProof that Clique Decision problem is NP-Complete Prerequisite: NP-Completeness A clique is a subgraph of a graph such that all the vertices in this subgraph are connected with each other that is the subgraph is a complete graph. The Maximal Clique Problem is to find the maximum sized clique of a given graph G, that is a complete graph which is a s 4 min read Proof that Independent Set in Graph theory is NP Complete Prerequisite: NP-Completeness, Independent set. An Independent Set S of graph G = (V, E) is a set of vertices such that no two vertices in S are adjacent to each other. It consists of non- adjacent vertices. Problem: Given a graph G(V, E) and an integer k, the problem is to determine if the graph co 5 min read Prove that a problem consisting of Clique and Independent Set is NP Complete Prerequisite: NP-Completeness, NP Class, Clique, Independent Set Problem: Given an undirected graph G = (V, E) and an integer K, determine if a clique of size K as well as an independent set (IS) of size K, exists. Demonstrate that it is an NP Complete. Explanation: A Clique is a subgraph of a graph 6 min read Prove that Dense Subgraph is NP Complete by Generalisation Prerequisites: NP-Completeness, NP Class, Dense Subgraph Problem: Given graph G = (V, E) and two integers a and b. A set of a number of vertices of G such that there are at least b edges between them is known as the Dense Subgraph of graph G. Explanation: To prove the Dense Subgraph problem as NP-c 3 min read Prove that Sparse Graph is NP-Complete Prerequisite: NP-Completeness, NP Class, Sparse Graph, Independent Set Problem: Given graph G = (V, E) and two integers a and b. A set of a number of vertices of G such that there are at most b edges between them is known as the Sparse Subgraph of graph G. Explanation: Sparse Subgraph problem is def 4 min read Like