Python | Pandas Series.to_csv() Last Updated : 24 Jun, 2020 Comments Improve Suggest changes 2 Likes Like Report Pandas series is a One-dimensional ndarray with axis labels. The labels need not be unique but must be a hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index. Pandas Series.to_csv() function write the given series object to a comma-separated values (csv) file/format. Syntax: Series.to_csv(*args, **kwargs) Parameter : path_or_buf : File path or object, if None is provided the result is returned as a string. sep : String of length 1. Field delimiter for the output file. na_rep : Missing data representation. float_format : Format string for floating point numbers. columns : Columns to write header : If a list of strings is given it is assumed to be aliases for the column names. index : Write row names (index). index_label : Column label for index column(s) if desired. If None is given, and header and index are True, then the index names are used. mode : Python write mode, default ‘w’. encoding : A string representing the encoding to use in the output file. compression : Compression mode among the following possible values: {‘infer’, ‘gzip’, ‘bz2’, ‘zip’, ‘xz’, None}. quoting : Defaults to csv.QUOTE_MINIMAL. quotechar : String of length 1. Character used to quote fields. Returns : None or str Example #1: Use Series.to_csv() function to convert the given series object to csv format. Python3 # importing pandas as pd import pandas as pd # Creating the Series sr = pd.Series(['New York', 'Chicago', 'Toronto', 'Lisbon', 'Rio', 'Moscow']) # Create the Datetime Index didx = pd.DatetimeIndex(start ='2014-08-01 10:00', freq ='W', periods = 6, tz = 'Europe / Berlin') # set the index sr.index = didx # Print the series print(sr) Output : Now we will use Series.to_csv() function to convert the given Series object into a comma separated format. Python3 1== # convert to comma-separated sr.to_csv() Output : As we can see in the output, the Series.to_csv() function has converted the given Series object into a comma-separated format. Example #2: Use Series.to_csv() function to convert the given series object to csv format. Python3 # importing pandas as pd import pandas as pd # Creating the Series sr = pd.Series([19.5, 16.8, None, 22.78, None, 20.124, None, 18.1002, None]) # Print the series print(sr) Output : Now we will use Series.to_csv() function to convert the given Series object into a comma separated format. Python3 1== # convert to comma-separated sr.to_csv() Output : As we can see in the output, the Series.to_csv() function has converted the given Series object into a comma-separated format. Comment S Shubham__Ranjan Follow 2 Improve S Shubham__Ranjan Follow 2 Improve Article Tags : Pandas Python-pandas Python pandas-series-methods AI-ML-DS With Python Explore Pandas Tutorial 4 min read IntroductionPandas Introduction 3 min read How to Install Pandas in Python? 5 min read How To Use Jupyter Notebook - An Ultimate Guide 5 min read Creating ObjectsCreating a Pandas DataFrame 2 min read Python Pandas Series 5 min read Creating a Pandas Series 3 min read Viewing DataPandas Dataframe/Series.head() method - Python 3 min read Pandas Dataframe/Series.tail() method - Python 3 min read Pandas DataFrame describe() Method 4 min read Selection & SlicingDealing with Rows and Columns in Pandas DataFrame 5 min read Pandas Extracting rows using .loc[] - Python 3 min read Extracting rows using Pandas .iloc[] in Python 7 min read Indexing and Selecting Data with Pandas 4 min read Boolean Indexing in Pandas 6 min read Python | Pandas DataFrame.ix[ ] 2 min read Python | Pandas Series.str.slice() 3 min read How to take column-slices of DataFrame in Pandas? 2 min read OperationsPython | Pandas.apply() 4 min read Apply function to every row in a Pandas DataFrame 3 min read Python | Pandas Series.apply() 3 min read Pandas dataframe.aggregate() | Python 2 min read Pandas DataFrame mean() Method 2 min read Python | Pandas Series.mean() 2 min read Python | Pandas dataframe.mad() 2 min read Python | Pandas Series.mad() to calculate Mean Absolute Deviation of a Series 2 min read Python | Pandas dataframe.sem() 3 min read Python | Pandas Series.value_counts() 2 min read Pandas Index.value_counts()-Python 3 min read Applying Lambda functions to Pandas Dataframe 6 min read Manipulating DataAdding New Column to Existing DataFrame in Pandas 6 min read Python | Delete rows/columns from DataFrame using Pandas.drop() 4 min read Python | Pandas DataFrame.truncate 3 min read Python | Pandas Series.truncate() 2 min read Iterating over rows and columns in Pandas DataFrame 4 min read Pandas Dataframe.sort_values() 2 min read Python | Pandas Dataframe.sort_values() | Set-2 3 min read How to add one row in existing Pandas DataFrame? 4 min read Grouping DataPandas GroupBy 4 min read Grouping Rows in pandas 2 min read Combining Multiple Columns in Pandas groupby with Dictionary 2 min read Merging, Joining, Concatenating and ComparingPython | Pandas Merging, Joining and Concatenating 8 min read Python | Pandas Series.str.cat() to concatenate string 3 min read Python - Pandas dataframe.append() 4 min read Python | Pandas Series.append() 4 min read Pandas Index.append() - Python 2 min read Python | Pandas Series.combine() 3 min read Add a row at top in pandas DataFrame 1 min read Python | Pandas str.join() to join string/list elements with passed delimiter 2 min read Join two text columns into a single column in Pandas 2 min read How To Compare Two Dataframes with Pandas compare? 5 min read How to compare the elements of the two Pandas Series? 3 min read Working with Date and TimePython | Working with date and time using Pandas 8 min read Python | Pandas Timestamp.timestamp 3 min read Python | Pandas Timestamp.now 3 min read Python | Pandas Timestamp.isoformat 2 min read Python | Pandas Timestamp.date 2 min read Python | Pandas Timestamp.replace 3 min read Pandas.to_datetime()-Python 3 min read Python | pandas.date_range() method 4 min read Like