Practice Problems on Determinant using Elementary Operations
Last Updated :
16 May, 2024
Using the properties of determinants and without expanding in Exercise 1 to 7, prove that:
Question 1. \begin{vmatrix}x & a & x+a\\y & b & y+b\\z &c & z+c\end{vmatrix}=0
Solution:
L.H.S.= \begin{vmatrix}x & a & x+a\\y & b & y+b\\z &c & z+c\end{vmatrix}
C 1 →C 1 +C 2
= \begin{vmatrix}x+a & a & x+a\\y+b & b & y+b\\z+c &c & z+c\end{vmatrix}
According to Properties of Determinant
=0 [∵ C 1 & C 3 are identical]
Now, L.H.S.=R.H.S.
Hence Proved
Question 2. \begin{vmatrix}a-b & b-c & c-a\\b-c & c-a & a-b\\c-a & a-b & b-c\end{vmatrix}=0
Solution:
L.H.S.= \begin{vmatrix}a-b & b-c & c-a\\b-c & c-a & a-b\\c-a & a-b & b-c\end{vmatrix}
\begin{array}{l} \text { } \qquad\mathrm{C}{1} \rightarrow \mathrm{C}{1}+\mathrm{C}{2}+\mathrm{C}{3} \\ =\left|\begin{array}{lll} a-b+b-c+c-a & b-c & c-a \\ b-c+c-a+a-b & c-a & a-b \\ c-a+a-b+b-c & a-b & b-c \end{array}\right| \\ =\left|\begin{array}{lll} 0 & b-c & c -a \\ 0 & c-a & a-b \\ 0 & a-b & b-c \end{array}\right|=0 \end{array}
=0 [∵ Every element of C 1 are 0]
Now, L.H.S.=R.H.S.
Hence Proved
Question 3. \begin{vmatrix}2 & 7 & 65\\3 & 8 & 75\\5 & 9 & 86\end{vmatrix}=0
Solution:
L.H.S.= \begin{vmatrix}2 & 7 & 65\\3 & 8 & 75\\5 & 9 & 86\end{vmatrix}
C 3 →C 3 -C 1
= \begin{vmatrix}2 & 7 & 63\\3 & 8 & 72\\5 & 9 & 81\end{vmatrix}
= 2\begin{vmatrix}2 & 7 & 7\\3 & 8 & 8\\5& 9 & 9\end{vmatrix}
=9 ×0=0 [∵C 2 & C 3 are identical]
Now, L.H.S.=R.H.S.
Hence Proved
Question 4. \begin{vmatrix}1 & bc & a(b+c)\\1 & ca & b(c+a)\\1 & ab & c(a+b)\end{vmatrix}=0
Solution:
L.H.S.= \begin{vmatrix}1 & bc & a(b+c)\\1 & ca & b(c+a)\\1 & ab & c(a+b)\end{vmatrix}
= \text { } \mathrm{C}{3} \rightarrow \mathrm{C}{3}+\mathrm{C}_{2}\\\\ \text {= }\begin{vmatrix}1 & bc & ab+ac\\1 & ca & bc+ba\\1 & ab & ca+cb\end{vmatrix}\\\\ \text {= }\begin{vmatrix}1 & bc & ab+ac+bc\\1 & ca & bc+ba+ca\\1 & ab & ca+cb+ab\end{vmatrix}\\\\ \text {= }(ab+ac+bc)\begin{vmatrix}1 & bc & 1\\1 & ca &1\\1 & ab & 1\end{vmatrix}\\\\ \text {= }(ab+ac+bc)0\\\\ \text {= 0 }\qquad\qquad[∵Two \:columns\: are\: identical]
Now, L.H.S.=R.H.S.
Hence Proved
Question 5. \begin{vmatrix}b+c & q+r & y+z\\c+a & r+p & z+x\\a+b & p+q & x+y\end{vmatrix}=2\begin{vmatrix}a& p & x\\b & q & y\\c & r & z\end{vmatrix}
Solution:
L.H.S.= \begin{vmatrix}b+c & q+r & y+z\\c+a & r+p & z+x\\a+b & p+q & x+y\end{vmatrix}
\begin{array}{l} \text { } \qquad\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3} \\ =\left|\begin{array}{lll} b+c+c+a+a+b & q+r+r+p+p+q & y+z+z+x+x+y \\ c+a & r+p & z+x \\ a+b & p+q & x+y \end{array}\right|\\\\ =\left|\begin{array}{lll} 2(a+b+c) & 2(p+q+r) & 2(x+y+z) \\ c+a & r+p & z+x \\ a+b & p+q & x+y \end{array}\right| \\\\ =\left|\begin{array}{lll} (a+b+c) & (p+q+r) & (x+y+z) \\ c+a & r+p & z+x \\ a+b & p+q & x+y \end{array}\right| \end{array}
\begin{aligned} &\text { } \mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\mathrm{R}_{2}\\ &=2\left|\begin{array}{lcc} b & q & y \\ c+a & r+p & z+x \\ a+b & p+q & x+y \end{array}\right|\\ &\text { } \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}\\ &=2\left|\begin{array}{ccc} b & q & y \\ c+a & r+p & z+x \\ a & p & x \end{array}\right|\\ &\text { } \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{3}\\ &=2\left|\begin{array}{lll} b & q & y \\ c & r & z \\ a & p & x \end{array}\right|\\ &\text {Interchange } \mathrm{R}_{2} \text { and } \mathrm{R}_{3} \text { }\\ &=-2\left|\begin{array}{ccc} b & q & y \\ a & p & x \\ c & r & z \end{array}\right| \end{aligned}
=-(-2)\begin{vmatrix}a & p & q\\b & q & y\\c & r & z\end{vmatrix}\\\\ =2\begin{vmatrix}a & p & q\\b & q & y\\c & r & z\end{vmatrix}\\\\
Now, L.H.S.=R.H.S.
Hence Proved
Question 6. \begin{vmatrix}0& a & -b\\-a & 0 & -c\\b & c & 0\end{vmatrix}=0
Solution:
Let Δ= \begin{vmatrix}0& a & -b\\-a & 0 & -c\\b & c & 0\end{vmatrix}
Taking (-1) common from every row
Δ=(-1) 3 \begin{vmatrix}0& -a & b\\a & 0 & c\\-b & -c & 0\end{vmatrix}
Interchange rows and columns
Δ=- \begin{vmatrix}0& a & -b\\-a & 0 & -c\\b & c & 0\end{vmatrix}
Now, Δ=-Δ
Δ+Δ=0
2Δ=0
Δ=0
Now, L.H.S.=R.H.S.
Hence Proved
Question 7. \begin{vmatrix}-a^{2}& ab& ac\\ba & -b^{2} & bc\\ca & cb & -c^{2}\end{vmatrix}=4a^{2}b^{2}c^{2}
Solution:
L.H.S.= \begin{vmatrix}-a^{2}& ab& ac\\ba & -b^{2} & bc\\ca & cb & -c^{2}\end{vmatrix}
Taking common a from Row 1,
b from Row 2,
c from Row 3, we have
\begin{array}{l} =a b c\left|\begin{array}{ccc} -a & b & c \\ a & -b & b \\ a & b & -c \end{array}\right| \\ \\\text { } R_{1} \rightarrow R_{1}+R_{2} \\\\ =a b c\left|\begin{array}{ccc} 0 & 0 & 2 c \\ a & -b & c \\ a & b & -c \end{array}\right| \\\\ =a b c \cdot 2 c\left|\begin{array}{cc} a & -b \\ a & b \end{array}\right| \\\\ =a b c \cdot 2 c(a b+a b) \\\\ =a b c 2 c .2 a b=4 a^{2} b^{2} c^{2} \end{array}
Now, L.H.S.=R.H.S.
Hence Proved
By using properties of determinants, in Exercises 8 to 14, show that:
Question 8(i). \begin{vmatrix}1 & a & a^{2}\\1 & b & b^{2}\\1 & c & c^{2}\end{vmatrix}=(a-b)(b-c)(c-a)
(ii) \begin{vmatrix}1 & 1 & 1\\a & b & c\\a^{3} &b^{3} & c^{3}\end{vmatrix}=(a-b)(b-c)(c-a)(a+b+c)
Solution:
(i) L.H.S.= \begin{vmatrix}1 & a & a^{2}\\1 & b & b^{2}\\1 & c & c^{2}\end{vmatrix}
\begin{aligned} &R _{2} \rightarrow R _{2}- R _{1} \text { and } R _{3} \rightarrow R _{3}- R _{1}\\ &=\left|\begin{array}{ccc} 1 & a & a^{2} \\ 0 & b-a & b^{2}-a^{2} \\ 1 & c-a & c^{2}-a^{2} \end{array}\right|\\ &\left|\begin{array}{ccc} 1 & a & a^{2} \\ 0 & b-a & (b-a)(b+a) \\ 0 & c-a & (c-a)(c+a) \end{array}\right|\\ &\text { Takina (b-a) and (c-a) common from } R _{2} \text { and } R _{3} \text { respective }\\ &=(b-a)(c-a)\left|\begin{array}{ccc} 1 & a & a^{2} \\ 0 & 1 & (b+a) \\ 0 & 1 & (c+a) \end{array}\right|\\ &R_{2} \rightarrow R_{2}-R_{3}\\ &=(b-a)(c-a)\left|\begin{array}{ccc} 1 & a & a^{2} \\ 0 & 0 & (b-c) \\ 0 & 1 & (c+a) \end{array}\right| \end{aligned}
\begin{aligned} &\text { Expanding along } 1^{\text {st }} \text { column }\\ &=(b-a)(c-a) \begin{array}{ll} =\left|\begin{array}{lll} 0 & (b+a) \\ 1 & (c+a) \end{array}\right| \end{array}\\ &=(b-a)(c-a)(0-(b-c))\\ &=(b-a)(c-a)(c-b)\\ &=(a-b)(b-c)(c-a)\text { }\\ &=0 \end{aligned}
Now, L.H.S.=R.H.S.
Hence Proved
(ii) L.H.S.= \begin{vmatrix}1 & 1 & 1\\a & b & c\\a^{3} &b^{3} & c^{3}\end{vmatrix}
\begin{aligned} &\text { operating } C _{2} \rightarrow C _{2}- C _{1} \text { and } C _{3} \rightarrow C _{3}- C _{3}\\ &=\left|\begin{array}{ccc} 1 & 0 & 0 \\ a & b-a & c-a \\ a^{3} & b^{3}-a^{3} & c^{3}-a^{3} \end{array}\right|\\ &=1\left|\begin{array}{cc} b-a & c-a \\ b^{3}-a^{3} & c^{3}-a^{3} \end{array}\right|\\ &=1\left|\begin{array}{cc} b-a & c-a \\ (b-a)\left(b^{2}+a^{2}+a b\right) & (c-a)\left(c^{2}+a^{2}+a c\right) \end{array}\right|\\ &=(b-a)(c-a) \mid\left(b^{2}+a^{2}+a b\right) \quad\left(c^{2}+a^{2}+a c\right)\\ &=(b-a)(c-a)\left(c^{2}+a^{2}+a c-b^{2}-a^{2}-a b\right)\\ &=(b-a)(c-a)\left(c^{2}-b^{2}+a c-a b\right)\\ &=(b-a)(c-a)[(c-b)(c+b)+a(c-b)]\\ &=(b-a)(c-a)(c-b)(c+b+a)\\ &=-(a-b)(c-a)[-(b-c)(c+b+a)]\\ &=(a-b)(b-c)(c-a)(a+b+c) \end{aligned}
Now, L.H.S.=R.H.S.
Hence Proved
Question 9. \begin{vmatrix}x & x^{2} & yz\\y & y^{2} & zx\\z & z^{2} & xy\end{vmatrix}=(x-y)(y-z)(z-x)(xy+yz+zx)
Solution:
L.H.S.= \begin{vmatrix}x & x^{2} & yz\\y & y^{2} & zx\\z & z^{2} & xy\end{vmatrix}
R_{1} \rightarrow R_{1}-R_{2}
=\left|\begin{array}{ccc} (x-y) & (x+y)(x-y) & z(y-x) \\ y^{2} & y^{2} & z x \\ z &z^{2}& x y \end{array}\right|
\begin{aligned} &=(x-y)\left|\begin{array}{ccc} 1 & (x+y) & -2 \\ y^{2} & y^{2} x & 2 x \\ z & z^{2} & x y \end{array}\right|\\ &\begin{array}{l} \qquad R_{2} \rightarrow R_{2}-R_{3} \\ =(x-y)\left|\begin{array}{lll} 1 & (x+y) & -2 \\ y-2 & y^{2}-2^{2} & 2 x-x y \\ 2 & 2^{2} & x y \end{array}\right| \end{array}\\ &=(x-y)(y-2)\left|\begin{array}{ccc} 1 & (x+y) & -2 \\ 1 & (y+2) & 2 x-x y \\ 2 & z^{2} & x y \end{array}\right|\\\\ &=(x-y)(y-2)\left|\begin{array}{ccc} 1 & (x+y) & -z \\ 1 & (y+z) & -x \\ z & \left(z^{2}\right) & x y \end{array}\right|\\\\ &\begin{array}{l} R_{1} \rightarrow R_{1}-R_{2} \\ \end{array} \end{aligned}
=(x-y)(y-z)\left|\begin{array}{ccc} 0 & x-2 & -z+x \\ 1 & y+2 & -x \\ z & z^{2} & x y \end{array}\right|
=(x-y)(y-z)(z-x)\left|\begin{array}{ccc} 0 & -1 & -1 \\ 1 & y+z & -x \\ z & z^{2} & x y \end{array}\right|
=(x-y)(y-z)(z-x)\left|\begin{array}{ccc} 0 & 0 & -1 \\ 1 & x+y+z & -x \\ z & z^{2}-xy & x y \end{array}\right|\\\\ =(x-y)(y-z)(z-x)[-1(z^{2}-xy-zx-zy-z^{2}]\\\\ =(x-y)(y-z)(z-x)(xy+zx+zy)
Now, L.H.S.=R.H.S.
Hence Proved
Question 10.(i) \begin{vmatrix}x+4& 2x & 2x\\2x & x+4 & 2x\\2x & 2x & x+4\end{vmatrix}=(5x+4)(4-x)^{2}
(ii) \begin{vmatrix}y+k & y & y\\y & y+k & y\\y & y & y+k\end{vmatrix}=k^{2}(3y+k)
Solution:
(i) L.H.S.= \begin{vmatrix}x+4& 2x & 2x\\2x & x+4 & 2x\\2x & 2x & x+4\end{vmatrix}
\begin{aligned} &R_{1} \rightarrow R_{1}+R_{2}+R_{3}\\ &=\left|\begin{array}{ccc} 5 x+4 & 5 x+4 & 5 x+4 \\ 2 x & x+4 & 2 x \\ 2 x & 2 x & x+4 \end{array}\right|\\ &\text { Taking } (5 x+4) \text { common from } R_{1}\\ &=(5 x+4)\left|\begin{array}{ccc} 1 & 1 & 1 \\ 2 x & x+4 & 2 x \\ 2 x & 2 x & x+4 \end{array} \right|.\\ &\text {} C _{2} \rightarrow C _{2}- C _{1} \text { and } \left. C _{3} \rightarrow C _{3}- C _{1}\right]\\ &=(5 x+4)\left|\begin{array}{ccc} 1 & 0 & 0 \\ 2 x & 4-x & 0 \\ 2 x & 0 & 4-x \end{array}\right|\\ &=(5 x+4) \cdot 1\left|\begin{array}{cc} 4-x & 0 \\ 0 & 4-x \end{array}\right|\\ &=(5 x+4)(4- x^{2}) \end{aligned}
Now, L.H.S.=R.H.S.
Hence Proved
(ii) L.H.S.= \begin{vmatrix}y+k & y & y\\y & y+k & y\\y & y & y+k\end{vmatrix}
\begin{aligned} & C _{1} \rightarrow C _{1}+ C _{2}+ C _{3}\\ &=\left|\begin{array}{ccc} 3 y+k & y & y \\ 3 y+k & y+k & y \\ 3 y+k & y & y+k \end{array}\right|\\ &\text { Taking } 3 y+k \text { common from } C_{1}\\ &=(3 y+k)\left|\begin{array}{ccc} 1 & y & y \\ 1 & y+k & y \\ 1 & y & y+k \end{array}\right|\\ &\text { } C _{2} \rightarrow C _{2}- C _{1} \text { and } C _{3} \rightarrow C _{3}-C_{1} \end{aligned}
\begin{array}{l} =(3 y+k)\left|\begin{array}{lll} 1 & y & y \\ 0 & k & 0 \\ 0 & 0 & k \end{array}\right| \\ =(3 y+k) \cdot 1\left|\begin{array}{ll} k & 0 \\ 0 & k \end{array}\right| \\ =(3 y+k) k^{2}=k^{2}(3 y+k) \end{array}
Now, L.H.S.=R.H.S.
Hence Proved
Question 11. (i)\begin{array}{ccc} \left|\begin{array}{lll} a-b-c & 2 a & 2 a \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b \end{array}\right| \end{array} \mid=(a+b+c)^{3}
(ii)\left|\begin{array}{ccc} x+y+2 z & x & y \\ z & y+z+2 x & y \\ z & x & z+x+2 y \end{array}\right|=2(x+y+z)^{3}
Solution:
(i) L.H.S.=\begin{array}{ccc} \left|\begin{array}{lll} a-b-c & 2 a & 2 a \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b \end{array}\right| \end{array} \mid
\begin{aligned} &R_{1} \rightarrow R_{1}+R_{2}+R_{3} \\ &=\left|\begin{array}{ccc} a+b+c & a+b+c & a+b+c \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b \end{array}\right|\\ &\text { Taking } a+b+c \text { common from } R_{1}\\ &=(a+b+c)\left|\begin{array}{ccc} 1 & 1 & 1 \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b \end{array}\right|\\ &[C_{2} \rightarrow C_{2}-C_{1} \text { and } C_{3} \rightarrow C_{3}-C_{1} \end{aligned}
\begin{array}{l} =(a+b+c)\left|\begin{array}{ccc} 1 & 0 & 0 \\ 2 b & -b-c-a & 0 \\ 2 c & 0 & -c-a-b \end{array}\right| \\ =(a+b+c) \cdot 1 \begin{array}{cc} =\left|\begin{array}{lll} -b-c-a & 0 \\ 0 & -c-a-b \mid \end{array}\right| \end{array} \\ =(a+b+c)\{-(b+c+a)\}\{-(c+a+b)\} \\ = |a+b+c|^{3} \text { } \end{array}
∵ L.H.S.=R.H.S
Hence proved
(ii) \left|\begin{array}{ccc} x+y+2 z & x & y \\ z & y+z+2 x & y \\ z & x & z+x+2 y \end{array}\right|
\begin{aligned} & C _{1} \rightarrow C _{1}+ C _{2}+ C _{3}\\ &=\left|\begin{array}{ccc} 2(x+y+z) & x & y \\ 2(x+y+z) & y+z+2 x & y \\ 2(x+y+z) & x & z+x+2 y \end{array}\right|\\ &\text { Taking } 2(x+y+z) \text { common from } C_{1}\\ &=2(x+y+z)\left|\begin{array}{ccc} 1 & x & y \\ 1 & y+z+2 x & y \\ 1 & x & z+x+2 y \end{array}\right|\\ & R _{2} \rightarrow R _{2}- R _{1} \text { and } R _{3} \rightarrow R _{3}- R _{1} \end{aligned}
\begin{array}{l} =2(x+y+z)\left|\begin{array}{ccc} 1 & x & y \\ 0 & x+y+z & 0 \\ 0 & 0 & x+y+z \end{array}\right| \\ =2(x+y+z) \cdot 1 \cdot\left|\begin{array}{cc} x+y+z & 0 \\ 0 & x+y+z \end{array}\right| \\ =2(x+y+z)\left[(x+y+z)^{2}-0\right] \\ =2(x+y+z)^{3} \text { } \end{array}
∵ L.H.S.=R.H.S
Hence proved
Question 12. \begin{aligned} &\text { }\left|\begin{array}{lll} 1 & x & x^{2} \\ x^{2} & 1 & x \\ x & x^{2} & 1 \end{array}\right|\\ \end{aligned}
Solution:
\begin{aligned} &\text { L.H.S. }=\left|\begin{array}{lll} 1 & x & x^{2} \\ x^{2} & 1 & x \\ x & x^{2} & 1 \end{array}\right|\\ &R_{1} \rightarrow R_{1}+R_{2}+R_{3}\\ &=\left|\begin{array}{ccc} 1+x+x^{2} & 1+x+x^{2} & 1+x+x^{2} \\ x^{2} & 1 & x \\ x & x^{2} & 1 \end{array}\right| \\ &\text { Taking } 1+x+x^{2} \text { common from } R_{1}\\ &=\left(1+x+x^{2}\right)\left|\begin{array}{ccc} 1 & 1 & 1 \\ x^{2} & 1 & x \\ x & x^{2} & 1 \end{array}\right|\\ &\left[C_{2} \rightarrow C_{2}-C_{1}\right. \& C_{3} \rightarrow C_{3}-C_{1}\\ &=\left|1+x+x^{2}\right| \begin{array}{ccc} =\left|\begin{array}{lll} 1 & 0 & 0 \\ x^{2} & 1-x^{2} & x-x^{2} \\ x & x-x & 1-x \end{array}\right| \end{array} \mid \end{aligned}
\begin{array}{l} =\left(1+x+x^{2}\right) \cdot 1 \cdot\left|\begin{array}{ll} 1-x^{2} & x-x^{2} \\ x^{2}-x & 1-x \end{array}\right| \\ =\left(1+x+x^{2}\right) \cdot 1 \cdot \mid \begin{array}{ll} (1-x)(1+x) & x(1-x) \\ -x(1-x) & 1-x \end{array} \\ =\left(1+x+x^{2}\right)\left[(1-x)^{2}(1+x)+x^{2}(1-x)^{2}\right] \\ =\left(1+x+x^{2}\right)(1-x)^{2}\left(1+x+x^{2}\right) \\ =\left(1+x+x^{2}\right)^{2}(1-x)^{2} \\ =\left[\left(1+x+x^{2}\right)(1-x)\right]^{2} \\ =\left(1-x+x-x^{2}+x^{2}-x^{2}\right)^{2} \\ =\left(1-x^{3}\right)^{2} \quad \text { } \end{array}
∵ L.H.S.=R.H.S
Hence proved
Question 13. \left|\begin{array}{ccc} 1+a^{2}-b^{2} & 2 a b & -2 b \\ 2 a b & 1-a^{2}+b^{2} & 2 a \\ 2 b & -2 a & 1-a^{2}-b^{2} \end{array}\right|=\left(1+a^{2}+b^{2}\right)^{3}
Solution:
L.H.S.= \left|\begin{array}{ccc} 1+a^{2}-b^{2} & 2 a b & -2 b \\ 2 a b & 1-a^{2}+b^{2} & 2 a \\ 2 b & -2 a & 1-a^{2}-b^{2} \end{array}\right|
\begin{array}{l} C _{1} \rightarrow C _{1}-b C _{3} \text { and } \left. C _{2} \rightarrow C _{2}+ aC _{3}\right] \\ =\begin{array}{ccc} \left|\begin{array}{lll} 1+a^{2}+b^{2} & 0 & -2 b \\ 0 & 1+a^{2}+b^{2} & 2 a \\ b\left(1+a^{2}+b^{2}\right) & -a\left(1+a^{2}+b^{2}\right) & 1-a^{2}-b^{2} \end{array}\right| \end{array} \\ =\left(1+a^{2}+b^{2}\right)\left|\begin{array}{ccc} 1 & 0 & -2 b \\ 0 & 1 & 2 a \\ b & -a & 1-a^{2}-b^{2} \end{array}\right| \\ {\left[ R _{1} \rightarrow R _{1}-bR_{1} \right]} \end{array}
\begin{array}{l} =\left(1+a^{2}+b^{2}\right)^{2}\left|\begin{array}{ccc} 1 & 0 & -2 b \\ 0 & 1 & 2 a \\ 0 & -a & 1-a^{2}+b^{2} \end{array}\right| \\ =\left(1+a^{2}+b^{2}\right)^{2}\left|\begin{array}{cc} 1 & 2 a \\ -a & 1-a^{2}+b^{2} \end{array}\right| \\ =\left(1+a^{2}+b^{2}\right)^{2}\left(1-a^{2}+b^{2}+2 a^{2}\right) \\ =\left(1+a^{2}-b^{2}\right)^{3} \end{array}
∵ L.H.S.=R.H.S
Hence proved
Question 14. \left|\begin{array}{ccc} a^{2}+1 & a b & a c \\ a b & b^{2}+1 & b c \\ c a & c b & c^{2}+1 \end{array}\right|=1+a^{2}+b^{2}+c^{2}
Solution:
L.H.S= \left|\begin{array}{ccc} a^{2}+1 & a b & a c \\ a b & b^{2}+1 & b c \\ c a & c b & c^{2}+1 \end{array}\right|
Multiplying column1,column2,column3 by a,b,c respectively and then dividing the determinant by a,b,c .
\begin{aligned} &=\frac{1}{a b c}\left|\begin{array}{ccc} a\left(a^{2}+1\right) & a b^{2} & a c^{2} \\ a^{2} b & b\left(b^{2}+1\right) & b c^{2} \\ a^{2} c & b^{2} c & c\left(c^{2}+1\right) \end{array}\right|\\ &\text { Taking a } b \text { and } c \text { common from } R_{1}, R_{2} \text { and } R_{3} \text { respectively }\\ &=\frac{a b c}{a b c} \begin{array}{ccc} =\left|\begin{array}{lll} a^{2}+1 & b^{2} & c^{2} \\ a^{2} & b^{2}+1 & c^{2} \\ a^{2} & b^{2} & c^{2}+1 \end{array}\right| \end{array}\\ &\left[ C _{1} \rightarrow C _{1}- C _{2}+ C _{3}\right]\\ &=\frac{a b c}{a b c}\left|\begin{array}{ccc} 1+a^{2}+b^{2}+c^{2} & b^{2} & c^{2} \\ 1+a^{2}+b^{2}+c^{2} & b^{2}-1 & c^{2} \\ 1-a^{2}+b^{2}-c^{2} & b^{2} & c^{2}+1 \end{array}\right| \end{aligned}
\begin{aligned} &=\left(1+a^{2}+b^{2}+c^{2}\right)\left|\begin{array}{ccc} 1 & b^{2} & c^{2} \\ 1 & b^{2}+1 & c^{2} \\ 1 & b^{2} & c^{2}+1 \end{array}\right|\\ &\left[ R _{2} \rightarrow R _{2}- R _{1} \text { and } R _{3} \rightarrow R _{3}- R _{1}\right]\\ &=\left(1+a^{2}+b^{2}+c^{2}\right)\left|\begin{array}{ccc} 1 & b^{2} & c^{2} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right|\\ &=\left(1+a^{2}+b^{2}+c^{2}\right)(1)(1-0)\\ &=1+a^{2}+b^{2}+c^{2}\\ &\text { } \end{aligned}
∵ L.H.S.=R.H.S
Hence proved
Choose the correct answer in Exercises 15 and 16.
Question 15. Let A be a square matrix of order 3 x 3, then|A| is equal to:
(A) k|A|
(B) k 2 |A|
(C) k 3 |A|
(D) 3k|A|
Solution:
Let A =\begin{bmatrix}1 & 2 & 3\\4 & 5 & 6\\7 & 8 & 9\end{bmatrix} be a square matrix of order 3 x 3 ….(1)
Now, kA=\begin{bmatrix}k1 & k2 & k3\\k4 & k5 & k6\\k7 & k8 & k9\end{bmatrix}
⇒|kA|=\begin{vmatrix}k1 & k2 & k3\\k4 & k5 & k6\\k7 & k8 & k9\end{vmatrix}
⇒|kA|=k 3 \begin{vmatrix}1 & 2 & 3\\4 & 5 & 6\\7 & 8 & 9\end{vmatrix}
∴ |kA|= k 3 |A| [ from eq n .(1) ]
∴ option (C) is correct.
Question 16.Which of the following is correct
(A) Determinant is a square matrix.
(B) Determinant is a number associated to a matrix.
(C) Determinant is a number associated to a square matrix.
(D) None of these
Solution:
Since, Determinant is a number which is always associated to a square matrix.
∴ option (C) is correct.
Similar Reads
Practice Problem on Linear Equations in Two Variables
In this article, we will learn about one interesting topic which is covered in class 9 and class 10 mathematics. We will look at some formulas and problems of Linear equations in two variables.Important Formulas on Linear Equations in Two VariablesLinear equations in two variables are expressed in t
8 min read
Determinant of Matrix with Solved Examples
The determinant of a matrix is a scalar value that can be calculated for a square matrix (a matrix with the same number of rows and columns). It serves as a scaling factor that is used for the transformation of a matrix.It is a single numerical value that plays a key role in various matrix operation
15+ min read
Properties of Determinants
Properties of Determinants are the properties that are required to solve various problems in Matrices. There are various properties of the determinant that are based on the elements, rows, and columns of the determinant. These properties help us to easily find the value of the determinant. Suppose w
10 min read
Properties of Determinants
Properties of Determinants are the properties that are required to solve various problems in Matrices. There are various properties of the determinant that are based on the elements, rows, and columns of the determinant. These properties help us to easily find the value of the determinant. Suppose w
9 min read
Area of a Triangle using Determinants
Area of a Triangle using Determinants is one of the multiple methods available to find the area of a triangle and this method is often overlooked for its complexity. But the Area of a Triangle using Determinants comes very handy in coordinate geometry when all three vertices of a triangle are given
7 min read
Elementary Operations on Matrices
Elementary Operations on Matrices are the operations performed on the rows and columns of the matrix that do not change the value of the matrix. A matrix is a way of representing numbers in the form of an array, i.e. the numbers are arranged in the form of rows and columns. In a matrix, the rows and
9 min read
Matrix Multiplication Practice Questions
A matrix is a set of numbers arranged in rows and columns to form a rectangular array. Multiplying a matrix by another matrix is called "matrix multiplication". In this article, we will learn what matrix multiplication is. And practice some questions related to it.What is Matrix Multiplication?In li
4 min read
Addition and Subtraction of Algebraic Expressions Practice Questions
Algebraic expression is a mathematical expression that contains constants, variables, terms, coefficients and arithmetic operations such as addition, subtraction, division, multiplication, etc. As these expressions contain variables, therefore they are also called variable expressions. We can use al
8 min read
How to find the Determinant of a Matrix?
Answer: The following steps are to be followed to find the Determinant of a Matrix Select any row or column. To find the determinant, we normally start with the first row.Determine the co-factors of each of the row/column items that we picked in Step 1.Multiply the row/column items from Step 1 by th
6 min read
Solving Linear Equations Using the Elimination Method
If an equation is written in the form ax + by + c = 0, where a, b, and c are real integers and the coefficients of x and y, i.e. a and b, are not equal to zero, it is said to be a linear equation in two variables. For example, 3x + y = 4 is a linear equation in two variables- x and y. The numbers th
9 min read