Proof that MAX-SAT is NP Complete
Last Updated :
23 Jul, 2025
Prerequisite: NP-Completeness, NP Class, SAT
Problem: The MAX-SAT problem which is built on top of SAT(Boolean Satisfiability Problem) problem takes a boolean formula in conjunctive normal form with m clauses, n literals and input variable g where g ≤ m. If such an assignment exists, the result is an assignment of the literals such that at-least g clauses evaluate to TRUE, otherwise NO. Demonstrate that MAX-SAT is NP-Complete.
Explanation:
SAT , sometimes called as B-SAT(Boolean Satisfiability Problem)which is the problem of determining if there exists an interpretation that satisfies a given Boolean formula.It asks whether the variables of a given Boolean formula can be consistently replaced by the values TRUE or FALSE in such a way that the formula evaluates to TRUE
MAT-SAT is the maximum satisfiability problem, is an FNP generalisation of SAT. It asks for the maximum number of clauses which can be satisfied by any assignment and for the given problem minimum clauses satisfied should be g.
Given MAX-SAT problem can be described as follows:
Input – Conjunctive normal forms of m clauses and n literals in Boolean formula and g as an input variable where g ≤ m.
Output – If at-least g clauses are evaluated to TRUE, then assignment of literals is returned, otherwise NO.
To prove a problem NP Complete , there are two steps involved:
- Prove given problem belong to NP Class
- All other problems in the NP class can be polynomial time reducible to that problem. (This is the prove of being NP-Hard)
Now it is not possible to reduce every NP problem to another NP problem to prove it's NP completeness all the time. That's why we show that any known NP complete problem is reducible to that problem in polynomial time.
Proof:
To solve MAX-SAT as an NP-complete problem, we need to prove above two steps.
1. MAX-SAT belongs to NP Class: A problem is classified to be in NP Class if the solution for the problem can be verified in polynomial time.
- So, given input I to MAX-SAT and a solution S, we can check whether each literal is evaluated to TRUE/FALSE, and there are n literals in a clause.
- So time complexity is O(n) per clause, and there are m clauses.
- So total running time is O(nm), which is polynomial in nature. So MAX-SAT belongs to the NP Class.
2. MAX-SAT is an NP-Hard Problem:
Now we need to show that MAX-SAT is as hard as a known NP-Complete Problem. By using a reduction strategy we can show that MAX-SAT is as least as difficult as a known NP-Complete Problem (the known problem here will be the SAT problem). See here for the "Proof of SAT Is an NP-Complete".
We are going to show the reduction from SAT -> MAX-SAT
Input Conversion: We need to convert the input from SAT to input to MAX-SAT.
- For SAT, we are given a function f with n literals and m clauses in CNF form. For MAX-SAT, input function is going to be f’ with m’ clauses and n’ literals and integer g.
- To transform the given input from SAT -> MAX SAT
- Take input from SAT problem in CNF form f having n literals and m clauses.
- Set g = m
The transformation is going to be O(1) as we need to map the value of g=m so input conversion is polynomial in time.
Output Conversion: We need to convert the output from MAX-SAT to output to SAT
- If MAX-SAT returns NO then return NO for SAT.
- If MAX-SAT returns the solution as an assignment of literals, then return the same solution for all literals
So, assigning values to n literals takes O(n) time. So output conversion is polynomial in time.
Correctness: Now we need to prove the correctness of the claim which says
f is satisfied ↔ f' is satisfied
- Forward Implication: f is satisfied then f' is satisfied i.e f →f'
- For a given assignment in which SAT i.e f is satisfied will have m clauses set to be TRUE and since g=m in MAX-SAT so at least m clauses need to be satisfied in f’. Hence MAX-SAT would also be satisfied.
- And in all other assignments of SAT where the number of satisfied clauses is going to be less than m then MAX-SAT is not going to be satisfied.
- Reverse Implication: f' is satisfied then f is satisfied i.e f' →f
- For a given assignment in which MAX-SAT i.e f’ is satisfied, we will have at least g=m clauses be satisfied and
- For SAT we need to have m clauses to be satisfied. Hence SAT would also be satisfied.
So, this means if claim f is satisfied ↔ f' is satisfied is correct.
Hence, SAT -> MAX-SAT reduction can be done and takes polynomial time.
Conclusion:
So MAX-SAT is seen to be a generalisation of SAT and it’s also NP-Complete.
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem