Open In App

Python - Levy_stable Distribution in Statistics

Last Updated : 10 Jan, 2020
Comments
Improve
Suggest changes
Like Article
Like
Report
scipy.stats.levy_stable() is a Levy-stable continuous random variable. It is inherited from the of generic methods as an instance of the rv_continuous class. It completes the methods with details specific for this particular distribution. Parameters :
q : lower and upper tail probability x : quantiles loc : [optional]location parameter. Default = 0 scale : [optional]scale parameter. Default = 1 size : [tuple of ints, optional] shape or random variates. moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’). Results : Levy-stable continuous random variable
Code #1 : Creating Levy-stable Levy continuous random variable Python3 1==
# importing library

from scipy.stats import levy_stable  
  
numargs = levy_stable.numargs 
a, b = 4.32, 3.18
rv = levy_stable(a, b) 
  
print ("RV : \n", rv)  
Output :
RV : 
 scipy.stats._distn_infrastructure.rv_frozen object at 0x000002A9D6803648
Code #2 : Levy-stable continuous variates and probability distribution Python3 1==
import numpy as np 
quantile = np.arange (0.03, 2, 0.21) 

# Random Variates 
R = levy_stable.rvs(1.8, -0.5, size = 10) 
print ("Random Variates : \n", R) 

# PDF 
R = levy_stable.pdf(a, b, quantile) 
print ("\nProbability Distribution : \n", R) 
Output :
Random Variates : 
 [ 1.20654126 -0.56381774 -1.31527459 -0.90027222  0.52535969  0.03076316
 -4.69310302  0.61194358  1.31207992 -0.84552083]

Probability Distribution : 
 [nan nan nan nan nan nan nan nan nan nan]

Code #3 : Graphical Representation. Python3 1==
import numpy as np 
import matplotlib.pyplot as plt 
   
distribution = np.linspace(levy_stable.ppf(0.01, 1.8, -0.5), 
                           levy_stable.ppf(0.99, 1.8, -0.5), 100) 
print("Distribution : \n", distribution)  
Output :
Distribution : 
 [-4.92358285 -4.8368521  -4.75012136 -4.66339061 -4.57665986 -4.48992912
 -4.40319837 -4.31646762 -4.22973687 -4.14300613 -4.05627538 -3.96954463
 -3.88281389 -3.79608314 -3.70935239 -3.62262164 -3.5358909  -3.44916015
 -3.3624294  -3.27569866 -3.18896791 -3.10223716 -3.01550641 -2.92877567
 -2.84204492 -2.75531417 -2.66858343 -2.58185268 -2.49512193 -2.40839118
 -2.32166044 -2.23492969 -2.14819894 -2.06146819 -1.97473745 -1.8880067
 -1.80127595 -1.71454521 -1.62781446 -1.54108371 -1.45435296 -1.36762222
 -1.28089147 -1.19416072 -1.10742998 -1.02069923 -0.93396848 -0.84723773
 -0.76050699 -0.67377624 -0.58704549 -0.50031475 -0.413584   -0.32685325
 -0.2401225  -0.15339176 -0.06666101  0.02006974  0.10680048  0.19353123
  0.28026198  0.36699273  0.45372347  0.54045422  0.62718497  0.71391571
  0.80064646  0.88737721  0.97410796  1.0608387   1.14756945  1.2343002
  1.32103094  1.40776169  1.49449244  1.58122319  1.66795393  1.75468468
  1.84141543  1.92814618  2.01487692  2.10160767  2.18833842  2.27506916
  2.36179991  2.44853066  2.53526141  2.62199215  2.7087229   2.79545365
  2.88218439  2.96891514  3.05564589  3.14237664  3.22910738  3.31583813
  3.40256888  3.48929962  3.57603037  3.66276112]

Practice Tags :

Similar Reads