Python | Pandas dataframe.product()
Last Updated :
22 Nov, 2018
Improve
Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier.
Pandas
Python3
Let's use the
Python3 1==
Output :
Example #2: Use
Python3
Output :
dataframe.product()
function return the value of the product for the requested axis. It multiplies all the element together on the requested axis. By default the index axis is selected.
Syntax: DataFrame.product(axis=None, skipna=None, level=None, numeric_only=None, min_count=0, **kwargs) Parameters : axis : {index (0), columns (1)} skipna : Exclude NA/null values when computing the result. level : If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series numeric_only : Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series. min_count : The required number of valid values to perform the operation. If fewer than min_count non-NA values are present the result will be NA. Returns : prod : Series or DataFrame (if level specified)Example #1: Use
product()
function to find product of all the elements over the column axis in the dataframe.
# importing pandas as pd
import pandas as pd
# Creating the dataframe
df = pd.DataFrame({"A":[1, 5, 3, 4, 2],
"B":[3, 2, 4, 3, 4],
"C":[2, 2, 7, 3, 4],
"D":[4, 3, 6, 12, 7]})
# Print the dataframe
df

dataframe.product()
function to find the product of each element in the dataframe over the column axis.
# find the product over the column axis
df.product(axis = 1)

product()
function to find the product of any axis in the dataframe. The dataframe contains NaN
values.
# importing pandas as pd
import pandas as pd
# Creating the first dataframe
df = pd.DataFrame({"A":[1, 5, 3, 4, 2],
"B":[3, None, 4, 3, 4],
"C":[2, 2, 7, None, 4],
"D":[None, 3, 6, 12, 7]})
# using prod() function to raise each element
# in df1 to the power of corresponding element in df2
df.product(axis = 1, skipna = True)
