Python | Pandas Index.notna() Last Updated : 05 Jun, 2022 Comments Improve Suggest changes Like Article Like Report Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier.Pandas Index.notna() function Detect existing (non-missing) values. Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to True. Characters such as empty strings '' or numpy.inf are not considered NA values (unless you set pandas.options.mode.use_inf_as_na = True). NA values, such as None or numpy.NaN, get mapped to False values. Syntax: Index.notna()Parameters : Doesn’t take any parameter.Returns : numpy.ndarray: Boolean array to indicate which entries are not NA. Example #1: Use Index.notna() function to find all non-missing values in Index. Python3 # importing pandas as pd import pandas as pd # Creating the Index idx = pd.Index(['Labrador', None, 'Beagle', 'Mastiff', 'Lhasa', None, 'Husky', 'Beagle']) # Print the Index idx Output : Now we check for the non-missing values in the Index. Python3 # checks for non-missing values. idx.notna() Output : The function returned an array object having the same size as that of the index. True value means the index label is not missing and False value means the index label are missing. Example #2: Use Index.notna() function to check for the non-missing label in the Datetime Index. Python3 # importing pandas as pd import pandas as pd # Creating the Datetime Index idx = pd.DatetimeIndex([pd.Timestamp('2015-02-11'), None, pd.Timestamp(''), pd.NaT]) # Print the Datetime Index idx Output : Now we will check if the labels in the Datetime Index are present or missing. Python3 # test whether the passed Datetime # Index labels are missing or not. idx.notna() Output : As we can see in the output, the function has returned an array object having the same size as that of the Datetime Index. True value means the index label are not missing and False value means the index label are missing. Comment More infoAdvertise with us Next Article Python | Pandas Index.notna() S Shubham__Ranjan Follow Improve Article Tags : Technical Scripter Python Python-pandas Python pandas-indexing Practice Tags : python Similar Reads Python | Pandas Index.notnull() Index.notnull() function in pandas detect non-missing (non-NaN/None) values within a pandas Index. It returns a boolean array where True indicates the element is valid (not null) and False indicates it is missing. Example: Pythonimport pandas as pd import numpy as np idx = pd.Index([1, 2, np.nan, 4] 2 min read Python | Pandas Index.isna() Index.isna() function in pandas detects missing values i.e., NaN or None in a pandas.Index. It behaves identically to Index.isnull(), as both are aliases of each other. It returns a boolean array, where:True indicates a missing value.False indicates a valid (non-null) value.Example:Pythonimport pand 2 min read Python | Pandas Index.min() Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier. Pandas Index.min() function returns the minimum value of the Index. The function works 2 min read Python | Pandas Index.isin() Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier. Pandas Index.isin() function return a boolean array where the index values are in valu 2 min read Python | Pandas Index.nunique() Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier. Pandas Index.nunique() function return number of unique elements in the object. It ret 2 min read Like