Open In App

Python | Pandas Panel.cummax()

Last Updated : 01 Jan, 2019
Comments
Improve
Suggest changes
Like Article
Like
Report
In Pandas, Panel is a very important container for three-dimensional data. The names for the 3 axes are intended to give some semantic meaning to describing operations involving panel data and, in particular, econometric analysis of panel data. Panel.cummax() function is used to returns a DataFrame or Series of the same size containing the cumulative maximum.
Syntax: Panel.cummax(axis=None, skipna=True, *args, **kwargs) Parameters: axis : The index or the name of the axis. 0 is equivalent to None or ‘index’. skipna : Exclude NA/null values. If an entire row/column is NA, the result will be NA. Returns: Cummax of DataFrame or Panel
Code #1: Python3 1==
# importing pandas module 
import pandas as pd 
import numpy as np

df1 = pd.DataFrame({'a': ['Geeks', 'For', 'geeks', 'for', 'real'], 
                    'b': [11, 1.025, 333, 114.48, 1333]})
                    
data = {'item1':df1, 'item2':df1}

# creating Panel 
panel = pd.Panel.from_dict(data, orient ='minor')

print(panel, "\n")
print(panel['b'])

print("\n", panel['b'].cummax(axis = 0))
Output:   Code #2: Python3 1==
# importing pandas module 
import pandas as pd 
import numpy as np

df1 = pd.DataFrame({'a': ['Geeks', 'For', 'geeks'], 
                    'b': np.random.randn(3)})
                    
data = {'item1':df1, 'item2':df1}

# creating Panel 
panel = pd.Panel.from_dict(data, orient ='minor')
print(panel, "\n")
print(panel['b'])


df2 = pd.DataFrame({'b': [11, 12, 13]})
print("\n", panel['b'].cummax(axis = 0))
Output:

Next Article

Similar Reads