Python - seaborn.residplot() method Last Updated : 15 Jul, 2025 Comments Improve Suggest changes Like Article Like Report Seaborn is an amazing visualization library for statistical graphics plotting in Python. It provides beautiful default styles and color palettes to make statistical plots more attractive. It is built on the top of matplotlib library and also closely integrated to the data structures from pandas. seaborn.residplot() : This method is used to plot the residuals of linear regression. This method will regress y on x and then draw a scatter plot of the residuals. You can optionally fit a lowess smoother to the residual plot, which can help in determining if there is a structure to the residuals. Syntax: seaborn.residplot(x, y, data=None, lowess=False, x_partial=None, y_partial=None, order=1, robust=False, dropna=True, label=None, color=None, scatter_kws=None, line_kws=None, ax=None) Parameters: The description of some main parameters are given below: x: Data or column name in 'data' for the predictor variable.y: Data or column name in 'data' for the response variable.data: (optional) DataFrame having `x` and `y` are column names.lowess: (optional) Fit a lowess smoother to the residual scatterplot.dropna: (optional) This parameter takes boolean value. If True, ignore observations with missing data when fitting and plotting. Return: Axes with the regression plot. Below is the implementation of above method: Example 1: Python3 # importing required packages import seaborn as sns import matplotlib.pyplot as plt # loading dataset data = sns.load_dataset("tips") # draw residplot sns.residplot(x = "total_bill", y = "tip", data = data) # show the plot plt.show() # This code is contributed # by Deepanshu Rustagi. Output: Example 2: Python3 # importing required packages import seaborn as sns import matplotlib.pyplot as plt # loading dataset data = sns.load_dataset("iris") # draw residplot # with lowess = True sns.residplot(x = "petal_length", y = "petal_width", data = data, lowess = True) # show the plot plt.show() # This code is contributed # by Deepanshu Rustagi. Output: Comment More infoAdvertise with us Next Article Company-wise Practice Problems D deepanshu_rustagi Follow Improve Article Tags : Python Python-Seaborn Practice Tags : python Similar Reads Interview PreparationInterview Preparation For Software DevelopersMust Coding Questions - Company-wise Must Do Coding Questions - Topic-wiseCompany-wise Practice ProblemsCompany PreparationCompetitive ProgrammingSoftware Design-PatternsCompany-wise Interview ExperienceExperienced - Interview ExperiencesInternship - Interview ExperiencesPractice @GeeksforgeeksProblem of the DayTopic-wise PracticeDifficulty Level - SchoolDifficulty Level - BasicDifficulty Level - EasyDifficulty Level - MediumDifficulty Level - HardLeaderboard !!Explore More...Data StructuresArraysLinked ListStackQueueBinary TreeBinary Search TreeHeapHashingGraphAdvance Data StructuresMatrixStringAll Data StructuresAlgorithmsAnalysis of AlgorithmsSearching AlgorithmsSorting AlgorithmsPattern SearchingGeometric AlgorithmsMathematical AlgorithmsRandomized AlgorithmsGreedy AlgorithmsDynamic ProgrammingDivide & ConquerBacktrackingBranch & BoundAll AlgorithmsProgramming LanguagesCC++JavaPythonC#Go LangSQLPHPScalaPerlKotlinWeb TechnologiesHTMLCSSJavaScriptBootstrapTailwind CSSAngularJSReactJSjQueryNodeJSPHPWeb DesignWeb BrowserFile FormatsComputer Science SubjectsOperating SystemsDBMSComputer NetworkComputer Organization & ArchitectureTOCCompiler DesignDigital Elec. & Logic DesignSoftware EngineeringEngineering MathematicsData Science & MLComplete Data Science CourseData Science TutorialMachine Learning TutorialDeep Learning TutorialNLP TutorialMachine Learning ProjectsData Analysis TutorialTutorial LibraryPython TutorialDjango TutorialPandas TutorialKivy TutorialTkinter TutorialOpenCV TutorialSelenium TutorialGATE CSGATE CS NotesGate CornerPrevious Year GATE PapersLast Minute Notes (LMNs)Important Topic For GATE CSGATE CoursePrevious Year Paper: CS exams Like