Open In App

statsmodels.expected_robust_kurtosis() in Python

Last Updated : 10 May, 2020
Comments
Improve
Suggest changes
Like Article
Like
Report
With the help of statsmodels.expected_robust_kurtosis() method, we can calculate the expected value of robust kurtosis measure by using statsmodels.expected_robust_kurtosis() method.
Syntax : statsmodels.expected_robust_kurtosis(ab, db) Return : Return the four kurtosis value i.e kr1, kr2, kr3 and kr4.
Example #1 : In this example we can see that by using statsmodels.expected_robust_kurtosis() method, we are able to get the expected value of robust kurtosis measure by using this method. Python3 1=1
# import numpy and statsmodels
import numpy as np
from statsmodels.stats.stattools import expected_robust_kurtosis
  
# Using statsmodels.expected_robust_kurtosis() method
gfg = expected_robust_kurtosis()
  
print(gfg)
Output :
[3.0000000 1.23309512 2.58522712 2.90584695]
Example #2 : Python3 1=1
# import numpy and statsmodels
import numpy as np
from statsmodels.stats.stattools import expected_robust_kurtosis
  
# Using statsmodels.expected_robust_kurtosis() method
gfg = expected_robust_kurtosis([12, 22], [6, 7])
  
print(gfg)
Output :
[3.0000000 1.23309512 1.23859789 1.0535188 ]

Explore