Open In App

statsmodels.jarque_bera() in Python

Last Updated : 26 Mar, 2020
Comments
Improve
Suggest changes
Like Article
Like
Report
With the help of statsmodels.jarque_bera() method, we can get the jarque bera test for normality and it's a test based on skewness, and the kurtosis, and has an asymptotic distribution.
Syntax : statsmodels.jarque_bera(residual, axis) Return : Return the jarque bera test statistics, pvalue, skewness, and the kurtosis.
Example #1 : In this example we can see that by using statsmodels.jarque_bera() method, we are able to get the jarque bera test statistics, pvalue, skewness and kurtosis by using this method. Python3 1=1
# import numpy and statsmodels
import numpy as np
from statsmodels.stats.stattools import jarque_bera

g = np.array([1, 2, 3])
# Using statsmodels.jarque_bera() method
gfg = jarque_bera(g)

print(gfg)
Output :
(0.28125, 0.8688150562628432, 0.0, 1.5)
Example #2 : Python3 1=1
# import numpy and statsmodels
import numpy as np
from statsmodels.stats.stattools import jarque_bera

g = np.array([1, 2, 3, -1, -2, -3])
# Using statsmodels.jarque_bera() method
gfg = jarque_bera(g)

print(gfg)
Output :
(0.5625000000000003, 0.7548396019890072, 0.0, 1.4999999999999996)

Article Tags :

Explore